网页清洗
- 创建空的df,保存测试数据test_df = pd.DataFrame({‘K1’:[‘C1’,‘C1’,‘C2’,‘C3’,‘C4’,‘C2’,‘C1’],‘K2’:[‘A’,‘A’,‘B’,‘C’,‘D’,np.NaN,np.NaN]})
- 按K1列进行分组,组内进行unique操作(去除重复元素,返回元组或列表) test_df_unique = pd.DataFrame(test_df.groupby([‘K1’])[‘K2’].agg(‘unique’))
- 自定义函数判断元组中是否含有nandef has_nan(list): flag = False for x in list: if x is np.NaN: flag = True break return flag
- #自定义函数判断元组中是否不含有nandef no_nan(list): flag = True for x in list: if x is np.NaN: flag = Fals break return flag
- 获取k2列含有nan的数据test_df_unique_has_nan = test_df_unique[test_df_unique[‘K2’].apply(has_nan)]
- #获取k2列不含有nan的数据test_df_unique_no_nan = test_df_unique[test_df_unique[‘K2’].apply(no_nan)]
- 管理测试数据,获取源数据test_df_get = test_df[test_df[‘K1’].isin(test_df_unique_has_nan.index.tolist())]
- test_df_alone = test_df[test_df[‘K1’].isin(test_df_unique_no_nan.index.tolist())]