Python实验-网页清洗

这篇博客介绍了使用Python进行网页数据清洗的过程,包括创建数据框,按列分组并去除重复元素,自定义函数判断元组中是否存在NaN,然后分别处理含NaN和不含NaN的数据,最后进行数据去重并保存到Excel文件。
摘要由CSDN通过智能技术生成

网页清洗

  1. 创建空的df,保存测试数据test_df = pd.DataFrame({‘K1’:[‘C1’,‘C1’,‘C2’,‘C3’,‘C4’,‘C2’,‘C1’],‘K2’:[‘A’,‘A’,‘B’,‘C’,‘D’,np.NaN,np.NaN]})
  2. 按K1列进行分组,组内进行unique操作(去除重复元素,返回元组或列表) test_df_unique = pd.DataFrame(test_df.groupby([‘K1’])[‘K2’].agg(‘unique’))
  3. 自定义函数判断元组中是否含有nandef has_nan(list): flag = False for x in list:  if x is np.NaN:  flag = True   break return flag
  4. #自定义函数判断元组中是否不含有nandef no_nan(list): flag = True for x in list:  if x is np.NaN:  flag = Fals break return flag
  5. 获取k2列含有nan的数据test_df_unique_has_nan = test_df_unique[test_df_unique[‘K2’].apply(has_nan)]
  6. #获取k2列不含有nan的数据test_df_unique_no_nan = test_df_unique[test_df_unique[‘K2’].apply(no_nan)]
  7. 管理测试数据,获取源数据test_df_get = test_df[test_df[‘K1’].isin(test_df_unique_has_nan.index.tolist())]
  8. test_df_alone = test_df[test_df[‘K1’].isin(test_df_unique_no_nan.index.tolist())]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值