毕业设计 基于深度学习的驾驶行为检测(玩手机)

0 简介

今天学长向大家分享一个毕业设计项目

毕业设计 基于深度学习的驾驶行为检测(玩手机)

项目运行效果:

毕业设计 深度学习的驾驶行为检测(玩手机)

项目获取:

https://gitee.com/assistant-a/project-sharing

1 系统设计原则

为了使本次设计的吸烟检测系统具有更好的实用性、准确性和稳定性,同时能够让相关操作人员在使用时感受到便捷并且容易上手,在设计本系统时,主要遵循了以下五项基本原则:

(1)规范性原则:

在系统开发的过程当中所用到的控制协议、传输协议,编码类型等都应该符合国家标准和行业标准。在代码撰写时,应该符合一般的技术规范。

(2)模块化设计原则

模块化设计是指在系统设计时,尽可能的将多个基本功能设计为多个独立运行的模块,并且每一个模块只负责一件事情。这样就可以让系统结构更加清晰,同时在实际的运行过程中可以实现不同模块之间的调用,大大增加了系统的灵活性。这样做既可以用有限的模块来最大限度的完成用户的要求,同时对系统后期的维护以及功能的增加都非常有利。

(3)可操作性与可维护性原则

一个好的系统应该具有很好的可操作性,所以在符合用户使用习惯的基础上,对每一个具体操作进行简化。同时,为了使系统可以更加便于维护,在系统设计的过程当中,应该提前想清楚各个功能模块之间的难点与逻辑,这样才能在日后的维护当中减少工作量。

(4)可拓展性原则

系统开发将多个基本功能尽可能的设计为多个独立运行的模块,大大增加了系统的可拓展性。与此同时,开发过程当中,前端和后端的功能是分开进行的,通过提前设计好的可供数据传输的接口,以 JSON 数据格式在各个模块之间进行数据交换操作,使前后端之间具有解耦关系,这样做可以保证了系统具有比较良好的可扩展能力和稳定能力。

(5)经济性原则

在系统设计的时候,首先是要考虑用户的具体需求,设计实用的功能,发挥系统的最大性能。但是在满足用户所需的功能后,也应该尽可能的减少开发成本,采用更加经济的技术设备,不能只是一味地追求更高级更复杂的设计

在这里插入图片描述
玩手机检测结果可视化:

在这里插入图片描述在这里插入图片描述

2 Yolov5算法

4.1 简介

YOLO系列是基于深度学习的回归方法。该系列陆续诞生出YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5。YOLOv5算法,它是一种单阶段目标检测的算法,该算法可以根据落地要求灵活地通过chaneel和layer的控制因子来配置和调节模型,所以在比赛和落地中应用比较多。同时它有YOLOv5x、YOLOv5l、YOLOv5m、YOLOv5s四种模型。
具有以下优点:

  • 在pytorch环境下编写;
  • 可以很容易编译成ON⁃NX和Core ML;
  • 运行速度很快,每秒可以达到140FPS的速度;
  • 模型精度高;
  • 集成了YOLOv3和YOLOv4的部分优秀特性,进行了推陈出新的改进。

2.2 相关技术

Mosaic数据增强

Mosaic数据增强技术采用了四张图片的随机缩放、随机剪裁、随机排布的方式对数据进行拼接,相比CutMix数据增强多用了两张图片。在目标识别过程中,要识别的目标有大目标、中等目标、小目标,并且三种目标的占比例不均衡,其中,小目标的数量是最多的,但是出现的频率很低,这种情况就会导致在bp时对小目标的优化不足,模型正确识别小目标的难度比识别中、大目标的难度要大很多,于是对于小目标来说很容易出现误检和漏检的情况。Mosaic数据增强技术做出改进后,上述的问题得到有效的解决。
该技术的优点是:

  • 丰富了数据集,采用“三个随机”的方式对数据进行拼接丰富了检测的数据集,尤其是随机缩放增加了很多小目标,克服了小目标的不足,让网络的鲁棒性得到提高;
  • 减少GPU的使用,在Mosaic增强训练时,四张图片拼接在一起,GPU可以直接计算四张图片的数据,让Mini-batch的大小减少了很多,这使得一个GPU就可以达到比较可观的效果。
    在这里插入图片描述

自适应anchor
自适应anchor是check_anchors函数通过遗传算法与Kmeans迭代算出的最大可能召回率的anchor组合。在网络模型的训练过程中,网络在初始化的锚框的基础上输出预测框,然后与真实框groundtruth进行对比,计算两个框之间的差值,再根据差值进行反向更新,迭代网络参数,最后求出最佳的锚框值。自适应的anchor能够更好地配合网络训练,提高模型的精度,减少对anchor的设计难度,具有很好的实用性。

自适应图片缩放
为了提高模型的推理速度,YOLOv5提出自适应图片缩放,根据长宽比对图像进行缩放,并添加最少的黑边,减少计算量。该方法是用缩放后的长边减去短边再对32进行取余运算,求出padding。在训练时并没有采用缩减黑边的方法,该方法只是在测试模型推理的时候才使用,这样提高了目标检测的准确率和速度。

Focus结构
该结构采用切片操作,将特征切片成四份,每一份将当成下采样的特征,然后在channel维度进行concat。例如:原始6086083的数据图片,经过切片操作先变成30430412的特征图,再经过一次32个卷积核的卷积操作,变成30430432的特征图。
在这里插入图片描述
在这里插入图片描述
CSP结构
YOLOv5中的CSP[5]结构应用于两处,一处是CSP1_X结构应用于Backbone的主干网络中,另一处的CSP2_X结构应用于Neck中,用于加强网络的特征融合的能力。CSPNet主要从网络结构设计的角度解决推理中从计算量很大的问题。该结构的优点有:1)增强CNN的学习能力,使得模型在轻量化的同时保持较高的准确性;2)减低计算的瓶颈问题;3)减低内存的分险。

PFN+PAN结构
这个结构是FPN和PAN的联合。FPN是自顶向下的,将高层的特征信息通过上采样的方式进行传递融合,得到进行预测的特征图,而PAN正好与FPN的方向是相反的方向,它是自底向上地采取特征信息。两个结构各自从不同的主干层对不同的检测层进行参数聚合。两个结构的强强联合让得到的特征图的特征更加明显和清楚。

Bounding box的损失函数
Bounding box损失函数[6]增加了相交尺度的衡量方式,有效缓解了当两个框不相交和两个框大小完全相同的两种特殊情况。因为当预测框和目标框不相交时,IOU=0,无法反应两个框距离的远近的时候,此时的损失函数不可导;两个框大小完全相同,两个IOU也相同,IOU_LOSS无法区分以上两种特殊情况。

nms非极大值抑制
在目标检测过程的后续处理中,对于大量的目标框的筛选问题,通常会进行nms操作,以此来达到一个不错的效果。YO⁃LOv5算法同样采用了加权的nms操作。

3 数据集处理及实验

数据集准备

由于目前针对吸烟图片并没有现成的数据集,我们使用Python爬虫利用关键字在互联网上获得的图片数据,编写程序爬了1w张,筛选下来有近1000张可用,以及其他途径获取到的,暂时可用数据集有5k张,

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

数据标注简介

通过pip指令即可安装

pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

4 部分核心代码

# data/smoke.yaml


# COCO 2017 dataset http://cocodataset.org
# Download command: bash yolov5/data/get_coco2017.sh
# Train command: python train.py --data ./data/coco.yaml
# Dataset should be placed next to yolov5 folder:
#   /parent_folder
#     /coco
#     /yolov5


# train and val datasets (image directory or *.txt file with image paths)
train: data\train.txt  # 上面我们生成的train,根据自己的路径进行更改
val: data\test.txt  # 上面我们生成的test
#test: ../coco/test-dev2017.txt  # 20k images for submission to https://competitions.codalab.org/competitions/20794

# number of classes
nc: 1   #训练的类别

# class names
names: ['smoke']

# Print classes
# with open('data/coco.yaml') as f:
#   d = yaml.load(f, Loader=yaml.FullLoader)  # dict
#   for i, x in enumerate(d['names']):
#     print(i, x)
# model/yolov5s.yaml


# parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# anchors
anchors:
  - [116,90, 156,198, 373,326]  # P5/32
  - [30,61, 62,45, 59,119]  # P4/16
  - [10,13, 16,30, 33,23]  # P3/8

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
  ]

# YOLOv5 head
head:
  [[-1, 3, BottleneckCSP, [1024, False]],  # 9

   [-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, BottleneckCSP, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, BottleneckCSP, [256, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]],  # 18 (P3/8-small)

   [-2, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, BottleneckCSP, [512, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]],  # 22 (P4/16-medium)

   [-2, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, BottleneckCSP, [1024, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]],  # 26 (P5/32-large)

   [[], 1, Detect, [nc, anchors]],  # Detect(P5, P4, P3)
  ]

# 训练部分主函数


if __name__ == '__main__':
    check_git_status()
    parser = argparse.ArgumentParser()
    parser.add_argument('--epochs', type=int, default=300)
    parser.add_argument('--batch-size', type=int, default=16)
    parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='*.cfg path')
    parser.add_argument('--data', type=str, default='data/smoke.yaml', help='*.data path')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--notest', action='store_true', help='only test final epoch')
    parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
    parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
    parser.add_argument('--weights', type=str, default='', help='initial weights path')
    parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
    parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--adam', action='store_true', help='use adam optimizer')
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%')
    parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
    opt = parser.parse_args()
    opt.weights = last if opt.resume else opt.weights
    opt.cfg = check_file(opt.cfg)  # check file
    opt.data = check_file(opt.data)  # check file
    print(opt)
    opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
    device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
    if device.type == 'cpu':
        mixed_precision = False

    # Train
    if not opt.evolve:
        tb_writer = SummaryWriter(comment=opt.name)
        print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
        train(hyp)

    # Evolve hyperparameters (optional)
    else:
        tb_writer = None
        opt.notest, opt.nosave = True, True  # only test/save final epoch
        if opt.bucket:
            os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists

        for _ in range(10):  # generations to evolve
            if os.path.exists('evolve.txt'):  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt('evolve.txt', ndmin=2)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min()  # weights
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.9, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1])  # gains
                ng = len(g)
                v = np.ones(ng)
                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = x[i + 7] * v[i]  # mutate

            # Clip to limits
            keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
            limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
            for k, v in zip(keys, limits):
                hyp[k] = np.clip(hyp[k], v[0], v[1])

            # Train mutation
            results = train(hyp.copy())

            # Write mutation results
            print_mutation(hyp, results, opt.bucket)

            # Plot results
            # plot_evolution_results(hyp)

项目运行效果:

毕业设计 深度学习的驾驶行为检测(玩手机)

最后

项目获取:

https://gitee.com/assistant-a/project-sharing

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值