机器学习--KNN算法

knn算法针对有监督学习,分为2种:聚类和回归

第1种:聚类

#导包(聚类)
from sklearn.neighbors import KNeighborsClassifier
#构建数据
x = [[3],[6],[8]]
y=[3,7,6]
#实例化模型
knn=KNeighborsClassifier(n_neighbors=1)
#训练
knn.fit(x,y)
#预测
print(knn.predict([[4]]))

运行结果:
在这里插入图片描述


#导包(回归)
from sklearn.neighbors import KNeighborsRegressor
#构建数据
x = [[3.4],[5.6],[8.9]]
y=[3,7,6]
#实例化模型
knn=KNeighborsRegressor(n_neighbors=1)
#训练
knn.fit(x,y)
#预测
print(knn.predict([[4]]))

运行结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值