【机器学习】机器学习中用到的高等数学知识-3.微积分 (Calculus)

3. 微积分 (Calculus)

  • 导数和梯度:用于优化算法(如梯度下降)中计算损失函数的最小值。
  • 偏导数:在多变量函数中优化目标函数。
  • 链式法则:在反向传播算法中用于计算神经网络的梯度。

导数和梯度:用于优化算法(如梯度下降)中计算损失函数的最小值。

导数和梯度是微积分中非常重要的概念,尤其在优化和机器学习中起着关键作用。以下是对这两个概念的详细解释:

1. 导数 (Derivative)

导数是函数在某一点的瞬时变化率或斜率,描述了函数值对自变量变化的敏感程度。对于单变量函数 f(x),导数的定义如下:

  • 定义

f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

  • 几何意义:导数表示曲线在某一点的切线的斜率。
  • 基本规则
    • 常数规则:如果 c 是常数,则 \frac{d}{dx}(c) = 0
    • 幂规则:如果 f(x) = x^n,则 f'(x) = nx^{n-1}
    • 和差规则\frac{d}{dx}(u + v) = \frac{du}{dx} + \frac{dv}{dx}​。
    • 乘法规则\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}​。
    • 链式法则:如果 y = f(g(x)),则 \frac{dy}{dx} = f'(g(x)) \cdot g'(x)
  • 常用的导数公式:

        以下是一些常用的导数公式,涵盖了基本的函数和一些常见的导数法则。了解这些公式有助于快速计算各种函数的导数。

       1. 基本导数公式
                常数的导数:

\frac{d}{dx}(c) = 0

                幂函数: 

\frac{d}{dx}(x^n) = nx^{n-1} \quad (n为任意实数)

                 指数函数: 

\frac{d}{dx}(e^x) = e^x

\frac{d}{dx}(a^x) = a^x \ln(a) \quad (a > 0)

                 对数函数:

\frac{d}{dx}(\ln(x)) = \frac{1}{x} \quad (x > 0)

\frac{d}{dx}(\log_a(x)) = \frac{1}{x \ln(a)} \quad (a > 0, a \neq 1)

        2. 三角函数的导数
                正弦函数

\frac{d}{dx}(\sin(x)) = \cos(x)

                余弦函数

\frac{d}{dx}(\cos(x)) = -\sin(x)

                正切函数

\frac{d}{dx}(\tan(x)) = \sec^2(x)

                余切函数

\frac{d}{dx}(\cot(x)) = -\csc^2(x)

                正割函数

\frac{d}{dx}(\sec(x)) = \sec(x) \tan(x)

                余割函数

\frac{d}{dx}(\csc(x)) = -\csc(x) \cot(x)

        3. 反三角函数的导数
                反正弦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值