3. 微积分 (Calculus)
- 导数和梯度:用于优化算法(如梯度下降)中计算损失函数的最小值。
- 偏导数:在多变量函数中优化目标函数。
- 链式法则:在反向传播算法中用于计算神经网络的梯度。
导数和梯度:用于优化算法(如梯度下降)中计算损失函数的最小值。
导数和梯度是微积分中非常重要的概念,尤其在优化和机器学习中起着关键作用。以下是对这两个概念的详细解释:
1. 导数 (Derivative)
导数是函数在某一点的瞬时变化率或斜率,描述了函数值对自变量变化的敏感程度。对于单变量函数 f(x),导数的定义如下:
-
定义:
-
几何意义:导数表示曲线在某一点的切线的斜率。
-
基本规则:
- 常数规则:如果
是常数,则
。
- 幂规则:如果
,则
。
- 和差规则:
。
- 乘法规则:
。
- 链式法则:如果
,则
。
- 常数规则:如果
-
常用的导数公式:
以下是一些常用的导数公式,涵盖了基本的函数和一些常见的导数法则。了解这些公式有助于快速计算各种函数的导数。
1. 基本导数公式
常数的导数:
幂函数:
(
为任意实数)
指数函数:
对数函数: