【最简单轻松教程】小白使用conda对ubuntu安装tensorflow和cuda等配套工具库

这里的版本是符合全部对应的要求的,如果你cuda支持11.2及以上版本的,甚至可以直接照抄我这个版本配置。
手里只有现成的conda pytorch环境包,但是想跑一个别人的代码,必须用tensorflow+keras,只能自己装。
看了很多其他的方法感觉特复杂还要改bash文件,我直接用conda+pip丝滑完成(除了公司破网有点难受之外)
这里参考了wx和csdn的一些教程(安装如果有问题可以参考这篇https://blog.csdn.net/justidle/article/details/130816566 还有https://blog.csdn.net/SJTUzhou/article/details/120750821,特别是numpy冲突的)。

总之,你需要做的步骤如下:

0、硬件驱动的安装,这个一般实验室或者公司会自带就不需要管了,不然就自己装一个。

我们只关心版本对不对:你只需要输入nvidia-smi,查看自己终端输出的表格的右上角的数字(比如12.0),表示CUDA版本最高支持为12.0版本(我自己的是这个),检查一下官网对应的版本匹配。

1、安装anaconda,然后创建一个专属环境,我这里python版本是3.7(如果创建conda环境时,python版本过低导致后续其他库安装过程报错,你可以后面再更新python版本,没关系)

2、使用conda安装cudatookit和cudnn:

conda install cudatoolkit=11.2
conda install cudnn=8.1

3、这里使用pip而非conda来安装tensorflow,因为我用conda会报错(踩了无数雷才明白):

pip install tensorflow-gpu=2.6

4、如果有冲突自己看看报错信息问问Gpt再改就得了。

不过正常来说现在就可以测试了:

python
import tensorflow as tf
# 检查tensorflow是否得到CUDA支持,安装成功则显示true,否则为false
tf.test.is_built_with_cuda()
# 检查tensorflow是否可以获取到GPU,安装成功则显示true,否则为false
tf.test.is_gpu_available()

两个都是输出true就应该成功了,看不懂或者不想看就问gpt然后自己结合解释看一遍原输出,有助于快速学习原理(哈哈性格急的人就是面向gpt编程,尴尬)
总之,我的光秃秃的终端输出如下:
在这里插入图片描述

5、安装keras:

貌似可以不需要自己去安装keras,因为tensorflow.keras 是 TensorFlow 自带的 Keras 实现,通常推荐使用它,因为它已经与 TensorFlow 深度集成,提供了更好的兼容性和性能。
如果你只使用 TensorFlow而不需要pytorch的话,不需要自己再单独安装 keras,继续使用 tensorflow.keras 就可以了。输入测试代码如下:

from tensorflow.keras import layers, models
model = models.Sequential([
    layers.Dense(units=10, activation='relu', input_shape=(784,)),
    layers.Dense(units=10, activation='softmax')
])

会输出类似这种结果,说明成功了:
在这里插入图片描述

PS:但如果头铁需要,你也可以自己单独安装:

pip install keras==2.10.0

这里可能会报错说安装不上,可以输入 pip list| grep kerasconda list| grep keras ,分别看一下有没有keras包+版本是否相同。

如果后面import keras或者使用keras的时候还是报错,就干脆uninstall keras(pip和conda都删一遍,然后检查一遍。为什么呢,反正我两次结果不一样,保险起见我就都检查了一次),然后你用tensorflow自带的keras来创建模型,和上面我代码里做的一样。

这是gpt给我的评价,虽然我keras安装的时候有问题,懒得解决了,之后再说:
在这里插入图片描述


好,暂时先记到这里!大家再见!永远支持开源免费的好教程呜呜,哪里还有推荐的网站我去挖挖?

要在Miniconda使用TensorFlowCUDA,您需要按照以下步骤进行操作: 1. 首先,您需要确保您的计算机上已正确安装了NVIDIA GPU驱动程序和CUDA工具包。您可以从NVIDIA官方网站下载并安装适合您GPU型号的驱动程序和CUDA工具包。 2. 接下来,您需要安装Miniconda。您可以从Anaconda官方网站下载并按照指示安装Miniconda。 3. 打开终端或命令提示符,并创建一个新的conda环境。在命令行中输入以下命令: ``` conda create -n myenv python=3.7 ``` 4. 激活新创建的conda环境。在命令行中输入以下命令: ``` conda activate myenv ``` 5. 使用conda安装TensorFlowCUDA相关的软件包。在命令行中输入以下命令: ``` conda install tensorflow-gpu==2.3.0 cudatoolkit=<CUDA版本号> cudnn=<cuDNN版本号> ``` 其中,<CUDA版本号>和<cuDNN版本号>应替换为您计算机上已安装CUDA工具包和cuDNN的版本号。请确保选择与您已安装CUDA版本兼容的TensorFlow版本。 例如,如果您已安装CUDA 10.1和cuDNN 7.6,您可以使用以下命令安装TensorFlow: ``` conda install tensorflow-gpu==2.3.0 cudatoolkit=10.1 cudnn=7.6 ``` 6. 安装完成后,您可以使用import语句在Python代码中导入TensorFlow,并使用CUDA进行加速。请确保在代码中添加适当的CUDA相关设置,以便TensorFlow能够正确使用GPU。 请注意,确保选择与您的计算机硬件和软件环境兼容的TensorFlowCUDA版本。不正确的版本选择可能导致安装和运行问题。 以上是在Miniconda使用TensorFlowCUDA的基本步骤。根据您的具体环境和需求,可能会有一些额外的配置和设置。确保参考TensorFlowCUDA的官方文档以获取更详细的信息和指南。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值