这里的版本是符合全部对应的要求的,如果你cuda支持11.2及以上版本的,甚至可以直接照抄我这个版本配置。
手里只有现成的conda pytorch环境包,但是想跑一个别人的代码,必须用tensorflow+keras,只能自己装。
看了很多其他的方法感觉特复杂还要改bash文件,我直接用conda+pip丝滑完成(除了公司破网有点难受之外)
这里参考了wx和csdn的一些教程(安装如果有问题可以参考这篇https://blog.csdn.net/justidle/article/details/130816566 还有https://blog.csdn.net/SJTUzhou/article/details/120750821,特别是numpy冲突的)。
总之,你需要做的步骤如下:
0、硬件驱动的安装,这个一般实验室或者公司会自带就不需要管了,不然就自己装一个。
我们只关心版本对不对:你只需要输入nvidia-smi,查看自己终端输出的表格的右上角的数字(比如12.0),表示CUDA版本最高支持为12.0版本(我自己的是这个),检查一下官网对应的版本匹配。
1、安装anaconda,然后创建一个专属环境,我这里python版本是3.7(如果创建conda环境时,python版本过低导致后续其他库安装过程报错,你可以后面再更新python版本,没关系)
2、使用conda安装cudatookit和cudnn:
conda install cudatoolkit=11.2
conda install cudnn=8.1
3、这里使用pip而非conda来安装tensorflow,因为我用conda会报错(踩了无数雷才明白):
pip install tensorflow-gpu=2.6
4、如果有冲突自己看看报错信息问问Gpt再改就得了。
不过正常来说现在就可以测试了:
python
import tensorflow as tf
# 检查tensorflow是否得到CUDA支持,安装成功则显示true,否则为false
tf.test.is_built_with_cuda()
# 检查tensorflow是否可以获取到GPU,安装成功则显示true,否则为false
tf.test.is_gpu_available()
两个都是输出true就应该成功了,看不懂或者不想看就问gpt然后自己结合解释看一遍原输出,有助于快速学习原理(哈哈性格急的人就是面向gpt编程,尴尬)
总之,我的光秃秃的终端输出如下:
5、安装keras:
貌似可以不需要自己去安装keras,因为tensorflow.keras 是 TensorFlow 自带的 Keras 实现,通常推荐使用它,因为它已经与 TensorFlow 深度集成,提供了更好的兼容性和性能。
如果你只使用 TensorFlow而不需要pytorch的话,不需要自己再单独安装 keras,继续使用 tensorflow.keras 就可以了。输入测试代码如下:
from tensorflow.keras import layers, models
model = models.Sequential([
layers.Dense(units=10, activation='relu', input_shape=(784,)),
layers.Dense(units=10, activation='softmax')
])
会输出类似这种结果,说明成功了:
PS:但如果头铁需要,你也可以自己单独安装:
pip install keras==2.10.0
这里可能会报错说安装不上,可以输入 pip list| grep keras
和 conda list| grep keras
,分别看一下有没有keras包+版本是否相同。
如果后面import keras或者使用keras的时候还是报错,就干脆uninstall keras(pip和conda都删一遍,然后检查一遍。为什么呢,反正我两次结果不一样,保险起见我就都检查了一次),然后你用tensorflow自带的
keras来创建模型,和上面我代码里做的一样。
这是gpt给我的评价,虽然我keras安装的时候有问题,懒得解决了,之后再说:
好,暂时先记到这里!大家再见!永远支持开源免费的好教程呜呜,哪里还有推荐的网站我去挖挖?