AGC005F:Many Easy Problems (计数原理+NTT)

题目传送门:https://agc005.contest.atcoder.jp/tasks/agc005_f?lang=en

vjudge题面传送门:https://vjudge.net/problem/AtCoder-2064


题目大意:给出一棵n个节点的树。令S为树上某些节点的集合,f(S)为包含这个集合的最小连通块的大小。对于每一个1<=k<=n,你要输出在n个点中任意选取k个点的 Ckn C n k 种方案的f值之和。模924844033(原根是5)。n<=200000。


题目分析:我们可以考虑一下树上每个节点对每个k值的贡献。假设一共选了k个节点,那么节点node什么时候会对ans[k]无贡献呢?就是这k个点都落在了以node为根时,它的同一棵子树中。所以node对ans[k]的贡献就是 CknCksize C n k − ∑ C s i z e k ,其中size是以node为根时,某一棵子树的大小。

然后我就想不到怎么做了,其实接下来的操作非常naive。考虑将所有点对某一个k的贡献加起来,发现它等于 nCknnx=0num[x]Ckx n ∗ C n k − ∑ x = 0 n n u m [ x ] ∗ C x k ,其中num[x]是子树大小为x的个数,这个数组可以通过一次DFS求出。然后发现后面的 Ckx C x k 其实就是 x!(xk)!k! x ! ( x − k ) ! k ! ,将k的阶乘提出来之后,就会发现分子分母下标之差相等。根据FFT的套路,反转其中一个数组后卷积即可。

之前我开FFT的数组都是开到300000的,这题n=200000,导致我RE了一发。以后还是直接开到1000000好了。


CODE:

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<stdio.h>
#include<algorithm>
using namespace std;

const int maxn=2000000;
const long long M=924844033;
const long long g=5;
typedef long long LL;

LL A[maxn];
LL B[maxn];

int Rev[maxn];
int N,Lg;

struct edge
{
    int obj;
    edge *Next;
} e[maxn<<1];
edge *head[maxn];
int cur=-1;

int num[maxn];
int Size[maxn];
int fa[maxn];

LL fac[maxn];
LL nfac[maxn]; 
int n;

void Add(int x,int y)
{
    cur++;
    e[cur].obj=y;
    e[cur].Next=head[x];
    head[x]=e+cur;
}

void Dfs(int node)
{
    Size[node]=1;
    for (edge *p=head[node]; p; p=p->Next)
    {
        int son=p->obj;
        if (son==fa[node]) continue;
        fa[son]=node;
        Dfs(son);
        Size[node]+=Size[son];
        num[ Size[son] ]++;
    }
    num[ n-Size[node] ]++;
}

LL Pow(LL x,LL y)
{
    if (!y) return 1;
    LL temp=Pow(x,y>>1);
    temp=temp*temp%M;
    if (y&1) temp=temp*x%M;
    return temp;
}

void DFT(LL *a,int f)
{
    for (int i=0; i<N; i++)
        if (i<Rev[i]) swap(a[i],a[ Rev[i] ]);

    for (int len=2; len<=N; len<<=1)
    {
        int mid=(len>>1);
        LL e=Pow(g,(M-1)/len);
        if (f==-1) e=Pow(e,M-2);

        for (LL *p=a; p!=a+N; p+=len)
        {
            LL wn=1;
            for (int i=0; i<mid; i++)
            {
                LL temp=wn*p[mid+i]%M;
                p[mid+i]=(p[i]-temp+M)%M;
                p[i]=(p[i]+temp)%M;
                wn=wn*e%M;
            }
        }
    }
}

void NTT()
{
    N=1,Lg=0;
    while (N<2*n+2) N<<=1,Lg++;
    for (int i=0; i<N; i++)
        for (int j=0; j<Lg; j++)
            if (i&(1<<j)) Rev[i]|=(1<<(Lg-j-1));

    DFT(A,1);
    DFT(B,1);
    for (int i=0; i<N; i++) A[i]=A[i]*B[i]%M;
    DFT(A,-1);

    LL inv=Pow(N,M-2);
    for (int i=0; i<N; i++) A[i]=A[i]*inv%M;
}

int main()
{
    freopen("c.in","r",stdin);
    freopen("c.out","w",stdout);

    scanf("%d",&n);
    for (int i=1; i<=n; i++) head[i]=NULL;
    for (int i=1; i<n; i++)
    {
        int u,v;
        scanf("%d%d",&u,&v);
        Add(u,v);
        Add(v,u);
    }

    Dfs(1);

    fac[0]=1;
    for (LL i=1; i<=n; i++) fac[i]=fac[i-1]*i%M;
    for (int i=0; i<=n; i++) nfac[i]=Pow(fac[i],M-2);

    for (int i=0; i<=n; i++) A[i]=(long long)num[i]*fac[i]%M;
    for (int i=0; i<=n; i++) B[i]=nfac[i];
    for (int i=0; n-i>i; i++) swap(B[i],B[n-i]);

    NTT();

    for (int k=1; k<=n; k++)
    {
        LL ans=(long long)n*fac[n]%M;
        ans=ans*nfac[k]%M;
        ans=ans*nfac[n-k]%M;
        LL Dec=A[n+k];
        Dec=Dec*nfac[k]%M;
        ans=(ans-Dec+M)%M;
        printf("%lld\n",ans);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值