【NTT】【数论】【图论】AGC005F Many Easy Problems

24 篇文章 0 订阅
22 篇文章 0 订阅

分析:

这题最恶心的一点就在开头:
首先,在树上,联通块大小为边的大小+1,所以可以算边的贡献:

对每条边而言,如果它能造成贡献,那么必然在它两端都有选中的点,设选k个点,那么方案数就是 C ( n , k ) − C ( s u m a , k ) − C ( s u m b , k ) C(n,k)-C(sum_a,k)-C(sum_b,k) C(n,k)C(suma,k)C(sumb,k) s u m a , s u m b sum_a,sum_b suma,sumb分别指这两侧的联通块大小。

然后再进一步,算每个分出来的联通块的贡献,
a n s k = n ∗ C ( n , k ) − ∑ i = k i ≤ N c n t i ∗ C ( i , k ) ans_k=n*C(n,k)-\sum_{i=k}^{i\leq N}cnt_i*C(i,k) ansk=nC(n,k)i=kiNcntiC(i,k)
其中 c n t i cnt_i cnti表示像上面说的那样,通过断一条边形成的联通块大小为i的数量。

这样就有 O ( n 2 ) O(n^2) O(n2)的算法了。

然后就有点套路化了,由于这里涉及到组合数,不妨把它拆开:
a n s k = n ∗ n ! k ! ∗ ( n − k ) ! − ∑ i = k i ≤ N c n t i ∗ i ! k ! ∗ ( i − k ) ! = k ! ( n ∗ n ! ( n − k ) ! − ∑ i = k i ≤ N c n t i ∗ i ! ( i − k ) ! ) ans_k=n*\frac{n!} {k!*(n-k)!}-\sum_{i=k}^{i\leq N}cnt_i*\frac {i!} {k!*(i-k)!}=k!(n*\frac{n!} {(n-k)!}-\sum_{i=k}^{i\leq N}cnt_i*\frac {i!} {(i-k)!}) ansk=nk!(nk)!n!i=kiNcntik!(ik)!i!=k!(n(nk)!n!i=kiNcnti(ik)!i!)

我们可以巧妙地把 N N N c n t cnt cnt以及其系数相同的部分合并一下:
f i = { − c n t i ∗ ( i ! ) ( i ≠ n ) n ∗ ( n ! ) ( i = n ) f_i=\begin{cases} -cnt_i*(i!)(i≠n)\\ n*(n!)(i=n)\\ \end{cases} fi={cnti(i!)(i̸=n)n(n!)(i=n)

把剩余部分再合并一下:
g i = 1 i ! g_i=\frac {1} {i!} gi=i!1

现在答案变为:
a n s k = k ! ∗ ( ∑ i − j = k f i ∗ g j ) ans_k=k!*(\sum_{i-j=k}f_i*g_j) ansk=k!(ij=kfigj)
发现这玩意离卷积就差一步了。。。
然后随便翻转一个,接着用ntt算卷积就行了

#include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
#define SF scanf
#define PF printf
#define MAXN 524388
#define MOD 924844033
using namespace std;
typedef long long ll;
struct node{
	int x;
	node *nxt;	
}edge[MAXN*2];
node *head[MAXN],*ncnt=edge;
void add_edge(int x,int y){
	ncnt++;
	ncnt->x=y;
	ncnt->nxt=head[x];
	head[x]=ncnt;	
}
ll f[MAXN],g[MAXN];
ll G=5;
int u,v;
ll fsp(ll x,int y){
	ll res=1;
	while(y){
		if(y&1)
			res=res*x%MOD;
		x=x*x%MOD;
		y>>=1;
	}
	return res;
}
void ntt(ll a[],int N,int flag){
	int i,j,k;
	for(i=1,j=0;i<N;i++){
		for(int d=N;j^=d>>=1,~j&d;);
		if(i<j)
			swap(a[i],a[j]);	
	}
	for(i=1;i<N;i<<=1){
		ll wn=fsp(G,(MOD-1)/(i<<1));
		if(flag==0)
			wn=fsp(wn,MOD-2);
		for(j=0;j<N;j+=i<<1){
			ll w=1;
			for(k=0;k<i;k++,w=w*wn%MOD){
				ll x=a[j+k],y=w*a[i+j+k]%MOD;
				a[j+k]=(x+y)%MOD;
				a[i+j+k]=(x-y+MOD)%MOD;
			}
		}
	}
	if(flag==0){
		ll inv=fsp(N,MOD-2);
		for(i=0;i<N;i++)
			a[i]=a[i]*inv%MOD;
	}
}
int siz[MAXN];
int cnt[MAXN];
int n;
void dfs(int x,int f){
	siz[x]=1;
	for(node *v=head[x];v!=NULL;v=v->nxt){
		int u=v->x;
		if(u==f)
			continue;
		dfs(u,x);
		cnt[siz[u]]++;
		cnt[n-siz[u]]++;
		siz[x]+=siz[u];
	}
}
ll fac[MAXN],ifac[MAXN];
int main(){
	SF("%d",&n);
	for(int i=1;i<n;i++){
		SF("%d%d",&u,&v);
		add_edge(u,v);
		add_edge(v,u);
	}
	dfs(1,0);
	for(int i=1;i<n;i++)
		cnt[i]=MOD-cnt[i];
	cnt[n]=n;
	fac[0]=1;
	for(int i=1;i<=n;i++)
		fac[i]=fac[i-1]*i%MOD;
	ifac[n]=fsp(fac[n],MOD-2);
	for(int i=n;i>=1;i--)
		ifac[i-1]=ifac[i]*i%MOD;
		
	for(int i=1;i<=n;i++)
		f[n-i]=cnt[i]*fac[i]%MOD;
	for(int i=0;i<=n;i++)
		g[i]=ifac[i];
	int len=1;
	while(len<=n*2)
		len<<=1;
	/*for(int i=0;i<n;i++){
		ll res=0;
		for(int j=0;j<=i;j++)
			res=(res+f[j]*g[i-j])%MOD;
	}*/
	ntt(g,len,1);
	ntt(f,len,1);
	for(int i=0;i<len;i++)
		g[i]=g[i]*f[i]%MOD;
	ntt(g,len,0);
	for(int i=1;i<=n;i++)
		PF("%lld\n",g[n-i]*ifac[i]%MOD);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值