在处理时间序列数据时,经常会遇到类别不平衡的情况,即某些类别的样本数量远远少于其他类别。这种情况下,传统的机器学习算法可能会受到影响,因为模型倾向于偏向样本数量较多的类别。为了解决这个问题,可以采用过采样算法,通过合成新的样本来增加少数类别的样本数量。本文将介绍一种基于时间序列模型的过采样算法,并提供相应的源代码。
算法步骤如下:
- 导入必要的库和模块:
import numpy as np
import pandas as pd
from sklearn.neighbors import NearestNeighbors
from scipy.stats import norm