基于时间序列模型的类别不平衡数据的过采样算法

120 篇文章 25 订阅 ¥59.90 ¥99.00
针对时间序列数据的类别不平衡问题,本文介绍了一种基于时间序列模型的过采样算法,通过合成新样本增加少数类别数量。该算法使用K最近邻找到最近邻样本,通过正态分布生成合成样本,有效改善模型性能,但也可能引入噪声,需要适当调整和评估。
摘要由CSDN通过智能技术生成

在处理时间序列数据时,经常会遇到类别不平衡的情况,即某些类别的样本数量远远少于其他类别。这种情况下,传统的机器学习算法可能会受到影响,因为模型倾向于偏向样本数量较多的类别。为了解决这个问题,可以采用过采样算法,通过合成新的样本来增加少数类别的样本数量。本文将介绍一种基于时间序列模型的过采样算法,并提供相应的源代码。

算法步骤如下:

  1. 导入必要的库和模块:
import numpy as np
import pandas as pd
from sklearn.neighbors import NearestNeighbors
from scipy.stats import norm
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值