机器学习系列算法(4)Xgboost

本文深入探讨了Xgboost算法,它作为Boosting的一种,通过集成多个CART回归树来创建强分类器。文章讨论了算法原理,包括其防止过拟合的策略和损失函数优化,并介绍了数据预处理、模型构建过程,如评估标准、调参等。此外,还强调了Xgboost的并行化能力、对稀疏数据的支持、交叉验证、早停策略和样本权重设置等功能。
摘要由CSDN通过智能技术生成

一、算法原理

Xgboost 是Boosting算法的其中一种,Boosting算法的思想是将许多弱分类器集成在一起,形成一个强分类器。因为Xgboost是一种提升树模型,所以它是将许多树模型集成在一起,形成一个很强的分类器。而所用到的树模型则是CART回归树模型。

二、算法案例

#导入库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sys
import pickle
import xgboost as xgb
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_absolute_error,make_scorer
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold,train_test_split
from scipy.sparse import csr_matrix,hstack
from xgboost import XGBRegressor

import warnings
warnings.filterwarnings('ignore')

%matplotlib inline

# This may raise an exception in earlier versions of Jupyter
%config InlineBackend.figure_format = 'retina'

1.数据预处理

train = pd.read_csv('train.csv')
pd.set_option('display.max_column',150)
train.head()

在这里插入图片描述
(1)对数变化

train['log_loss'] = np.log(train['loss'])

(2)数据分成连续和离散特征

features &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值