machine learning key word (part two)

machine learning key word (part two)
error rate:错误率

accuracy:精度

error:误差

training error:训练误差(或“empirical error:经验误差”)

test error:测试误差

generalization error:泛化误差

overfitting:过拟合

underfitting:欠拟合

model selection:模型选择

hold-out:留出法

sampling:采样

stratified sampling:分层采样

cross validation:交叉验证

k-fold cross validation:k折交叉验证

validation set:验证集

Leave-One-Out:留一法(简称“LOO”)

bootstrapping:自助法

bootstrap sampling:自助采样

out-of-bag estimate:包外估计

parameter tunning:调参

performance measure:性能度量

mean squared error:均方误差

precision:查准率,亦称“准确率”

recall:查全率,亦称“召回率”

true positive:真正例

True Positive Rate:真正例率(简称"TPR")

false positive:假正例

False Positive Rate:假正例率(简称"FPR")

true negative:真反例

false negative:假反例

confusion matrix:混淆矩阵

Break-Evendors Point:平衡点(简称“BEP”)

threshold:阈值

cut point:截断点

ROC:受试者工作曲线

AUC:Area under ROC Curve

loss:损失

unequal cost:非均等代价

cost-sensitive:代价敏感

hypothesis test:假设检验

binomial test:二项测试

confidence:置信度

two-tailed:双边

t-test:t检验

paired t-test:成对t检验

contingency table:列联表

bias-variance decomposition:偏差-方差分解

bias-variance dilemma:偏差-方差窘境

cost-sensitive learning:代价敏感学习

harmonic mean:调和平均
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值