machine learning key word (part two)
error rate:错误率
accuracy:精度
error:误差
training error:训练误差(或“empirical error:经验误差”)
test error:测试误差
generalization error:泛化误差
overfitting:过拟合
underfitting:欠拟合
model selection:模型选择
hold-out:留出法
sampling:采样
stratified sampling:分层采样
cross validation:交叉验证
k-fold cross validation:k折交叉验证
validation set:验证集
Leave-One-Out:留一法(简称“LOO”)
bootstrapping:自助法
bootstrap sampling:自助采样
out-of-bag estimate:包外估计
parameter tunning:调参
performance measure:性能度量
mean squared error:均方误差
precision:查准率,亦称“准确率”
recall:查全率,亦称“召回率”
true positive:真正例
True Positive Rate:真正例率(简称"TPR")
false positive:假正例
False Positive Rate:假正例率(简称"FPR")
true negative:真反例
false negative:假反例
confusion matrix:混淆矩阵
Break-Evendors Point:平衡点(简称“BEP”)
threshold:阈值
cut point:截断点
ROC:受试者工作曲线
AUC:Area under ROC Curve
loss:损失
unequal cost:非均等代价
cost-sensitive:代价敏感
hypothesis test:假设检验
binomial test:二项测试
confidence:置信度
two-tailed:双边
t-test:t检验
paired t-test:成对t检验
contingency table:列联表
bias-variance decomposition:偏差-方差分解
bias-variance dilemma:偏差-方差窘境
cost-sensitive learning:代价敏感学习
harmonic mean:调和平均