本文将为您介绍经典、热门的数据集,希望对您在选择适合的数据集时有所帮助。
1
Yolo_detection45138
-
更新时间:2024-11-11
-
访问地址: GitHub
-
描述:
本研究旨在基于改进的YOLOv11模型,构建一个高效的交通场景智能监测系统。该系统将利用包含7300幅图像的多类别数据集,涵盖行人、自行车、各种交通标志和信号灯、以及多种类型的车辆等多个类别。这些数据的多样性和丰富性为模型的训练提供了良好的基础,使其能够在复杂的交通环境中实现高精度的目标检测。
-
用途:
通过对交通场景的实时监测,智能监测系统不仅能够有效识别交通参与者及其行为,还能及时反馈交通信号和标志的状态。这将为交通管理部门提供有力的数据支持,帮助其优化交通流量、提高道路安全性,并减少交通事故的发生。此外,系统的应用还将促进智能交通系统的进一步发展,推动城市交通管理向智能化、自动化的方向迈进。
-
数据集网址:
https://github.com/Qunmasj-Vision-Studio/Yolo_detection45138
2
SmartTrafficAI
-
更新时间:2024-9-29
-
访问地址: GitHub
-
描述:
本仓库用于记录本人在完成毕业设计过程中学习人工智能相关知识的过程,包括但不限于:
-
OpenCV:计算机视觉库,用于图像处理与分析。
-
深度学习:利用神经网络模型进行复杂模式识别。
-
机器学习:应用各种算法进行数据预测与分类。
通过系统化的学习与实践,逐步掌握实现智慧交通管理系统所需的核心技术。
-
用途:
本仓库的最终目的是完成本人(江离然,Wjh)的毕业设计——基于OpenCV与人工智能相结合的智慧交通管理系统。该系统旨在通过计算机视觉和人工智能技术,实现对交通流量的智能监控与管理,提高交通效率,减少拥堵。
-
数据集网址:
https://github.com/Jiang-liran/SmartTrafficAI
3
python25_traffic_predict_nb
-
更新时间:2024-10-13
-
访问地址: GitHub
-
描述:
计算机毕业设计Python+Flask智慧交通 客流量分析预测 交通大数据 线性回归预测 大数据毕业设计 数据可视化 人工智能
-
数据集网址:
https://github.com/bysj2022NB/python25_traffic_predict_nb
4
FYP202273
-
更新时间:2024-11-1
-
访问地址: GitHub
-
描述:
本研究旨在基于改进的YOLOv11模型,构建一个高效的交通场景智能监测系统。该系统将利用包含1700张图像的数据集,涵盖了多个交通元素,如自行车、摩托车、行人、交通信号灯及交通标志等。通过对这些类别的精准检测与识别,系统能够实时监测交通流量、识别交通违规行为,并为交通管理部门提供数据支持。这不仅有助于提高交通安全性,减少事故发生率,还有助于优化交通信号控制,缓解交通拥堵问题。
-
用途:
智能监测系统的实现还将推动智能交通系统的发展,为城市交通管理提供智能化、数据化的解决方案。通过对交通场景的全面监测与分析,能够为城市规划、交通政策制定提供科学依据,进而提升城市交通管理的智能化水平。因此,本研究不仅具有重要的学术价值,也对实际交通管理具有深远的社会意义。
-
数据集网址:https://github.com/Qunmasj-Vision-Studio/FYP202273
5
python_traffic_predict2025
-
更新时间:2024-10-8
-
访问地址: GitHub
-
用途:Tensorflow交通标志识别检测 自动驾驶 机器学习 深度学习 人工智能 PyTorch 大数据
-
数据集网址:
https://github.com/bysj2022NB/python_traffic_predict2025
6
traffic_checks
-
更新时间:2024-9-26
-
访问地址: GitHub
-
描述:
本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
-
用途:交通标志识别系统
-
数据集网址:
https://github.com/qcpythons/traffic_checks
7
LS2K1000LA
-
更新时间:2024-07-10
-
访问地址: GitHub
-
用途:面向未来交通的物联网智能融合网关
-
数据集网址:
https://github.com/zmq-cd/LS2K1000LA
8
Single-Agent-and-Multi-Agent-Reinforcement-Learning-for-Single-Intersection-Traffic-Signal-Control
-
更新时间:2024-09-29
-
访问地址: GitHub
-
用途:考虑车辆和行人的单智能体和多智能体深度强化学习交通信号控制的性能比较分析
-
数据集网址:
https://github.com/dalianmeier/Single-Agent-and-Multi-Agent-Reinforcement-Learning-for-Single-Intersection-Traffic-Signal-Control
9
springbootA123
-
更新时间:2024-07-29
-
访问地址: GitHub
-
描述:
1.前台员工功能:首页、信息共享、交通信息、交通辅助、重大事件、后台管理和个人中心。
2.后台分为管理员和员工 管理员的功能:系统首页、个人中心、员工管理、部门信息管理、信息类型管理、信息共享管理、交通信息管理、交通辅助管理、重大事件管理和系统管理。 员工的功能:系统首页、个人中心、信息共享管理、交通信息管理、交通辅助管理和重大事件管理。
-
用途:
智能交通信息平台,旨在提高交通系统的运行效率,减少交通拥堵,保障交通安全,同时为出行者提供实时、准确的交通信息服务,推动交通行业的智能化、绿色化发展。
-
数据集网址:
https://github.com/ymhyd/springbootA123
10
vehicleSystem
-
更新时间:2024-04-13
-
访问地址: GitHub
-
描述:
智能交通后端
-
数据集网址:https://github.com/KinMan-ZHR/vehicleSystem
温馨 小贴士
如有您想了解的计算机方向数据集
请联系我们
免费为您提供数据集搜索服务