视频监控 智能交通 数据集(目标检测、跟踪)

本文介绍了两个重要的视频监控数据集——UA-DETRAC和MOT Challenge,用于目标检测和跟踪。UA-DETRAC涵盖多目标检测和跟踪基准,包含10小时真实世界视频,标记了大量车辆。MOT Challenge专注于行人跟踪,提供多个子数据集,如MOT15、MOT16/MOT17和MOT20,用于测试不同场景的跟踪性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

总结一下视频监控的数据集,用于目标检测、跟踪,持续跟新中..........。

一、UA-DETRAC 数据集

UA-DETRAC是一个具有挑战性的真实世界多目标检测多目标跟踪基准。该数据集包括在中国北京和天津的24个不同地点使用Cannon EOS 550D相机拍摄的10小时视频。视频以每秒25帧(fps)的速度录制,分辨率为960×540像素。UA-DETRAC数据集中有超过14万个帧,手动注释了8250个车辆,总共有121万个标记的对象边界框。官方还对目标检测和多目标跟踪中的最新方法以及本网站中详述的评估指标进行基准测试。


官网地址:
The UA-DETRAC Benchmark Suitehttp://detrac-db.rit.albany.edu/
论文地址:
https://arxiv.org/pdf/1511.04136.pdfhttps://arxiv.org/pdf/1511.04136.pdf使用车辆类别、天气、规模、遮挡率和截断率等属性分析了目标检测和跟踪算法的性能。

  • 车辆类别   我们将车辆分为四类,即轿车、公共汽车、面包车和其他。
  • 天气   我们考虑四类天气条件,即多云、夜间、晴天和雨天。
  • 比例   我们将带注释车辆的比例定义为其面积的平方根(以像素为单位)。我们将车辆分为三个等级:小型(0-50 像素)、中型(50-150 像素)和大型(超过 150 像素)。
  • 遮挡率   我们使用车辆边界框被遮挡的比例来定义遮挡程度。我们将遮挡程度分为三类:无遮挡、部分遮挡和重度遮挡。具体来说,如果车辆的遮挡率在 1%-50% 之间,我们定义为部分遮挡,如果遮挡率大于 50%,我们定义为重遮挡。
  • 截断率   截断率表示车辆部件在框架外的程度,用于训练样本选择。

二、MOT Challenge  数据集

MOT Challenge 是应用在多目标跟踪中最常见的数据集,它专门用于行人跟踪的场景,这些数据集目前已公开提供。对于每个数据集都提供了训练数据和测试数据,其中训练数据提供了目标检测结果和真实的跟踪结果,而测试数据只提供目标检测的结果。

常截至目前,MOT Challenge 数据集包含了MOT15,MOT16/MOT17,MOT20等子数据集。

MOT Challengehttps://motchallenge.net/MOT15 数据集部分视频序列实例:

 MOT15 子数据集是 MOT Challenge 数据集上第一代数据,它包括 2D MOT15数据和 3D MOT15 数据。其中 2D MOT15 数据一共包含了 22 段视频序列(其中11 段视频作为训练使用,另外 11 段视频作为测试使用)。另外 2D MOT15 子数据集使用了 ACF 检测器识别视频序列中的目标来提供公共的检测结果。

MOT16/MOT17 子数据集中行人密度较高,因此该数据集也更具挑战性。这两个数据集包含了相同的 14 段视频序列(其中 7 段视频作为训练使用,另外 7 段视频作为测试使用)。

MOT16 子数据集使用了 DPM 检测器作为公开检测器。而 MOT17 子数据集则提供了三组不同的目标检测(Faster R-CNN,DPM以及 SDP)结果。

MOT20 数据集部分序列实例:


 MOT20 子数据集的场景极其复杂,行人密度极高,更加考验多目标跟踪器的性能。该数据集一共包含 8 段视频序列,使用了 Faster R-CNN 作为检测器来提供公开检测结果。MOT20 数据集部分序列如上图所示,可以看到场景当中的人口密度极大。

参考文章:https://blog.csdn.net/weixin_44936889/article/details/107029111

参考文献:面向复杂场景的多目标跟踪算法研究.胡玉杰.电子科技大学.

目前只找到两个比较好的数据集,后面如果新的发现会持续跟新的,欢迎交流~

<think>好的,我现在需要帮助用户了解UA-DETRAC数据集的下载和使用说明。首先,我要查看用户提供的三个引用内容,看看里面有没有相关的信息。 引用[1]提到数据集包含8250个车辆实例,用于车辆检测,项目地址是https://gitcode.com/Open-source-documentation-tutorial/e11e5。这可能包含下载链接和文档。引用[2]补充了数据集有10900张图片,标注了四个类别,并且用于训练鲁棒的检测模型。引用[3]说明数据集在车牌识别中的应用,整合了BDD100K-MOT和UA-DETRAC的数据,用于车辆跟踪模型。 用户的问题是关于UA-DETRAC的下载和使用说明。首先,我需要确认是否有直接的下载链接。根据引用[1]中的项目地址,这个链接可能是下载或文档的入口。然后,使用说明方面,引用[3]提到使用方法,但具体步骤可能需要查看文档。 接下来,我需要将这些信息组织起来,分步骤回答用户。下载说明部分需要指出项目地址,可能包含下载方式,如Git仓库克隆或直接下载。使用说明需要涵盖数据集的类别、标注信息、应用场景,以及可能的数据预处理和增强方法,如引用[2]提到的数据增强技术。此外,车牌识别的应用部分也要提到,如引用[3]中的模型使用。 还需要注意用户可能需要的其他信息,比如数据格式、标注工具的使用,或者如何整合到现有项目中。如果文档中有这些内容,应一并说明。同时,确保回答结构清晰,分点列出下载步骤和使用场景,并生成相关问题。 最后,检查是否符合系统级指令:使用正确的中文,LaTeX格式无误,添加引用标识,生成相关问题。确保所有数学表达式用$...$,独立公式用$$...$$,但当前内容可能较少涉及数学,所以可能不需要。但如果有的话,比如性能指标中的数值,可能需要使用。</think>### UA-DETRAC数据集下载与使用说明 #### 一、数据集下载 1. **官方地址** 根据引用[1],UA-DETRAC数据集的项目地址为: https://gitcode.com/Open-source-documentation-tutorial/e11e5 该页面可能提供直接下载链接或通过Git仓库克隆获取数据集。若需详细步骤,建议查看项目页面的README文档[^1]。 2. **数据内容** - 包含8250个车辆实例,覆盖多种交通场景 - 总计10900张图片,标注类别包括:汽车(car)、公共汽车(bus)、面包车(vans)和其他(others)[^2] - 包含不同光照条件、车辆旋转等复杂场景,适用于鲁棒性测试 #### 二、使用说明 1. **核心用途** - **车辆检测与跟踪**:整合了BDD100K-MOT和UA-DETRAC的车辆数据,合并为`vehicle(1)`类别,支持车辆跟踪模型训练[^3] - **车牌识别**:与PP-OCRv3模型结合,可应用于车辆出入口自动闸机等场景[^3] - **行为分析**:如引用[2]中的人体摔倒检测实验,通过数据增强提升泛化能力 2. **数据处理建议** - **数据增强**:随机旋转、缩放、裁剪、颜色变换等(引用[2]推荐方法) - **标注格式**:需适配常见检测框架(如YOLO、Faster R-CNN),具体格式需参考数据集文档 - **性能验证**:建议划分训练集(如8639张)和验证集(如2231张)进行模型评估 #### 三、典型应用示例(引用[3]) ```python # 伪代码示例:PP-Vehicle车牌识别流程 车辆跟踪模型.load("PPVehicle_UA-DETRAC_weights") 车牌检测模型.load("PP-OCRv3_finetuned") for frame in video_stream: vehicles = 跟踪模型.detect(frame) for vehicle in vehicles: license_plate = 车牌检测模型.recognize(vehicle.roi) ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一颗小树x

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值