复变函数可视化-复变函数导数

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/L1558198727/article/details/90232486

实变函数导数存在

连续
左导数等于右导数

复变函数的导数存在:柯西黎曼条件

映射
f(z) = x + iy -> u + iv
等价于两个函数
u(x,y)
iv(x,y)

ux=vy \frac{\partial {u}}{\partial {x}} = \frac{\partial {v}}{\partial {y}}

uy=vx \frac{\partial {u}}{\partial {y}} =- \frac{\partial {v}}{\partial {x}}

有CR条件可以推出保角
映射是旋转加缩放
复变函数处处可导,称为解析函数

展开阅读全文

没有更多推荐了,返回首页