数学 之 复变函数

复变函数,是指以复数作为自变量和因变量的函数 ,而与之相关的理论就是复变函数论。是高数的一种进阶,更奇特有趣。复变函数一般用 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y)表示,自变量 z = x + i y z=x+iy z=x+iy

如果函数 f ( z ) f(z) f(z) z 0 z_0 z0点及 z 0 z_0 z0点的某个邻域内处处可导,那么称 f ( z ) f(z) f(z) z 0 z_0 z0点解析。
如果f(z)在区域 D D D内每一点解析,那么称 f ( z ) f(z) f(z) D D D内解析,或称 f ( z ) f(z) f(z) D D D内的一个解析函数,并把 D D D称为 f ( z ) f(z) f(z)的解析区域。函数在一点可导,不一定在该点处解析(必须是这个点的环绕区域都可导)(解析看来是一个面概念,就叫面可导吧)。

如果函数 f ( z ) f(z) f(z)在点 z 0 z_0 z0处不解析,但在点 z 0 z_0 z0的每一邻域内,总有若干个点使 f ( z ) f(z) f(z)解析,则 z 0 z_0 z0称为 f ( z ) f(z) f(z)的奇点。 z 0 z_0 z0附近都是处处解析的,则称其为孤立奇点。例如 f ( z ) = 1 z f(z)=\frac{1}{z} f(z)=z1 z = 0 z=0 z=0点。 z 0 z_0 z0附近都是处处解析的,则称其为孤立奇点。但是可以在这个点展开成洛朗级数,如果其负幂项均为零,则称为可去奇点。若负幂项有限,则称为m阶奇点。

函数解析的方程实质就是: lim ⁡ Δ → 0 Δ u + i Δ v Δ x + i Δ y = f ′ ( z ) \lim_{\Delta\rightarrow0}\frac{\Delta u+i\Delta v}{\Delta x+i\Delta y}=f'(z) Δ0limΔx+iΔyΔu+iΔv=f(z)

Δ y = 0 , Δ x → 0 \Delta y=0,\Delta x\rightarrow 0 Δy=0,Δx0变为沿平行实轴的方向趋向于点 z z z,此时有: lim ⁡ Δ x → 0 Δ u Δ x + i lim ⁡ Δ x → 0 Δ v Δ x = f ′ ( z ) \lim_{\Delta x\rightarrow0}\frac{\Delta u}{\Delta x}+i\lim_{\Delta x\rightarrow0}\frac{\Delta v}{\Delta x}=f'(z) Δx0limΔxΔu+iΔx0limΔxΔv=f(z) δ u δ x + i δ v δ x = f ′ ( z ) \frac{\delta u}{\delta x}+i\frac{\delta v}{\delta x}=f'(z) δxδu+iδxδv=f(z)同理有: − i δ u δ y + δ v δ y = f ′ ( z ) -i\frac{\delta u}{\delta y}+\frac{\delta v}{\delta y}=f'(z) iδyδu+δyδv=f(z),一一对应,就有柯西-黎曼方程/柯西-黎曼条件(C-R条件,见下),这是函数解析的必要条件(偏导数存在只是一条线存在,函数解析是从四面八方都存在):
∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} xu=yv,yu=xv

这个方程仅仅是从两条轴进去的。复变函数解析不仅满足 C − R C-R CR方程而且还必须是可微分的( u u u v v v具有一阶连续偏导数),这就是函数解析的充要条件。

拉普拉斯方程(连续求偏导所致):
∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 , ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 = 0 \frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}=0,\frac{\partial^2v}{\partial x^2}+\frac{\partial^2v}{\partial y^2}=0 x22u+y22u=0,x22v+y22v=0

凡在区域 D D D内具有连续二阶偏导数而满足拉普拉斯方程的二元实函数 u ( x , y ) u(x,y) u(x,y),称为区域 D D D的调和函数,调和函数在每一个球体(球壳)的平均值就是圆心那一点的值。还有很多实用性质。

复变函数的积分

对曲线的积分,不要想着复数,想成二变量就可以了。就是 ∫ c f ( z ) d z \int_cf(z)dz cf(z)dz。做法仍然是置换成一个 t t t而已。

柯西积分定理,格林公式,实际上跟高数是一样的。

解析函数在其解析区域有任意阶导数。

级数

复数的级数而已。就是 ∑ n = 1 ∞ z n \sum^\infty_{n=1}z_n n=1zn而已。但其收敛是在一个面上的。幂级数与泰勒级数有关,的确是如此。

洛朗级数是有负幂项的幂级数,是幂级数的扩展而已。也有洛朗展开定理。感觉差不多唉。

留数

留数实际上是在孤立奇点处的闭曲线积分。在定积分计算中有用。
留数也称残数,指的是复变函数沿着孤立奇点附近的围线积分后所剩下的值除以2(pai)i. 所以称为留数(或残数).
由于复变函数沿着解析点附近的围线积分的值为0,不剩下多余的数,而复变函数沿着孤立奇点附近的围线积分就可能不为0,会剩下非0的值,因此留数(或残数)就用来衡量复变函数在孤立奇点附近的特性了.
另外,复变函数f(z)在孤立奇点z0的留数(或残数)也就是复变函数在孤立奇点的Laurent洛朗级数中1/(z-z0)的系数.

保形映射

因为复变函数输入是复数,输出也是复数,因此可以看作一个点集到另一个点集的映射。
在这片自变量解析区域中,一条曲线 z = z ( t ) z=z(t) z=z(t),这里 z z z是复数, t t t是实数,这条曲线就会有切角,同样这条曲线会映射到因变量解析区域中,也会有切角,那么:
A r g w ′ ( t 0 ) = A r g f ′ [ z ( t 0 ) ] + A r g z ′ ( t 0 ) Argw'(t_0)=Argf'[z(t_0)]+Arg z'(t_0) Argw(t0)=Argf[z(t0)]+Argz(t0)

蛮神奇的哈, A r g Arg Arg自然是角度了,也就是说 w w w点处的切向量与 z z z切向量的辐角之差总是 A r g f ′ ( z ) Argf'(z) Argf(z),一个固定值,而与曲线 C C C无关。称 A r g f ′ ( z ) Argf'(z) Argf(z) f ( z ) f(z) f(z) z z z点的旋转角,因为只要旋转这个角度就能得到因变量的角。
那么也就是说,如果过一个点有两条曲线,它们的夹角,到因变量解析区域后,这个夹角是不变的,这就是保角的。它的条件是解析区域和复变函数倒数在这点不能为0.
而两个弧长极限之比为 ∣ f ′ ( z 0 ) ∣ |f'(z_0)| f(z0),也叫伸缩率。
如果解析区域半径足够小的话,一个普通图形映射后可以看作保持形状的映射图形,凡在区域D内处处具有保角性和伸缩率不变性的一一映射成为保型映射。

分式线性映射

形如 w = a z + b c z + d w=\frac{az+b}{cz+d} w=cz+daz+b,这里 w , z w,z w,z是变量, a , b , c , d a,b,c,d a,b,c,d是普通复数。

傅里叶变换

这个说烂了,跟复变没关系其实,
广义傅里叶变换
卷积

拉普拉斯变换

算子微分学
是傅里叶变换的补足,可以在条件更弱的情况下进行,有一个单位阶跃函数的东西。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值