复变函数的导数

1. 定义

lim ⁡ △ z → 0 f ( z 0 + △ z ) − f ( z 0 ) △ z 极 限 存 在 , 则 f ( z ) 在 z 0 处 可 导 。 \lim_{\bigtriangleup z \to 0}\frac{f(z_0+\bigtriangleup z)-f(z_0)}{\bigtriangleup z} 极限存在,则f(z)在z_0处可导。 z0limzf(z0+z)f(z0)f(z)z0

2. 判断是否可导

(1) 定义法

(2)定理法
在这里插入图片描述

单独的C-R条件只是函数可导的必要条件,而并非充分条件。

3. 性质

(1)可导函数的和差积商仍然可导。
(2)若一个复变函数可导,则其共轭不可导。反之不成立。

4. 导数的计算

(1) 定义法
(2) 公式法
f ′ ( z ) = ∂ u ∂ x + i ∂ v ∂ x f'(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} f(z)=xu+ixv

           = ∂ v ∂ y + i ∂ v ∂ x ~~~~~~~~~~= \frac{\partial v}{\partial y} + i\frac{\partial v}{\partial x}           =yv+ixv

           = ∂ u ∂ x − i ∂ u ∂ y ~~~~~~~~~~= \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y}           =xuiyu

           = ∂ v ∂ y − i ∂ u ∂ y ~~~~~~~~~~= \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y}           =yviyu

常用求导公式参照实值函数的求导公式

5. 求导的运算法则

[ f ( z ) + g ( z ) ] ′ = f ′ ( z ) ± g ′ ( z ) [f(z)+g(z)]'=f'(z) \pm g'(z) [f(z)+g(z)]=f(z)±g(z)

[ f ( z ) g ( z ) ] ′ = f ′ ( z ) g ( z ) + f ( z ) g ′ ( z ) [f(z)g(z)]'=f'(z) g(z)+f(z) g'(z) [f(z)g(z)]=f(z)g(z)+f(z)g(z)

[ f ( z ) g ( z ) ] ′ = f ′ ( z ) g ( z ) − f ( z ) g ′ ( z ) [ g ( z ) ] 2 [\frac{f(z)}{g(z)}]' = \frac{f'(z) g(z)-f(z) g'(z)}{[g(z)]^2} [g(z)f(z)]=[g(z)]2f(z)g(z)f(z)g(z)

6. 可导、可微、连续的关系

可导一定可微
可导一定连续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值