25高数考研张宇 -- 公式总结(更新中)

1. 两个重要极限

(1) lim ⁡ x → 0 sin ⁡ x x = 1 \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 limx0xsinx=1, 推广形式 lim ⁡ f ( x ) → 0 sin ⁡ f ( x ) f ( x ) = 1 \lim _{f(x) \rightarrow 0} \frac{\sin f(x)}{f(x)}=1 limf(x)0f(x)sinf(x)=1.
(2) lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=\mathrm{e} limx(1+x1)x=e, 推广形式 lim ⁡ x → 0 ( 1 + x ) 1 x = e , lim ⁡ f ( x ) → ∞ [ 1 + 1 f ( x ) ] f ( x ) = e \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\mathrm{e}, \lim _{f(x) \rightarrow \infty}\left[1+\frac{1}{f(x)}\right]^{f(x)}=\mathrm{e} limx0(1+x)x1=e,limf(x)[1+f(x)1]f(x)=e

2. 常用的等价无穷小量及极限公式

(1) 当 x → 0 x \rightarrow 0 x0 时,常用的等价无穷小

  • (1) x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln (1+x) \sim \mathrm{e}^x-1 xsinxtanxarcsinxarctanxln(1+x)ex1.
  • (2) 1 − cos ⁡ x ∼ 1 2 x 2 , 1 − cos ⁡ b x ∼ b 2 x 2 ( b ≠ 0 ) 1-\cos x \sim \frac{1}{2} x^2, 1-\cos ^b x \sim \frac{b}{2} x^2(b \neq 0) 1cosx21x2,1cosbx2bx2(b=0).
  • (3) a x − 1 ∼ x ln ⁡ a ( a > 0 a^x-1 \sim x \ln a(a>0 ax1xlna(a>0, 且 a ≠ 1 ) a \neq 1) a=1).
  • (4) ( 1 + x ) α − 1 ∼ α x ( α ≠ 0 ) (1+x)^\alpha-1 \sim \alpha x (\alpha \neq 0) (1+x)α1αx(α=0).

(2) 当 n → ∞ n \rightarrow \infty n x → ∞ x \rightarrow \infty x 时,常用的极限公式

  • (1) lim ⁡ n → ∞ n n = 1 , lim ⁡ n → ∞ a n = 1 ( a > 0 ) \lim _{n \rightarrow \infty} \sqrt[n]{n}=1, \lim _{n \rightarrow \infty} \sqrt[n]{a}=1(a>0) limnnn =1,limnna =1(a>0).
  • (2) lim ⁡ x → ∞ a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 b m x m + b m − 1 x m − 1 + ⋯ + b 1 x + b 0 = { a n b m , n = m , 0 , n < m , ∞ , n > m , \lim _{x \rightarrow \infty} \frac{a_n x^n+a_{n-1} x^{n-1}+\cdots+a_1 x+a_0}{b_m x^m+b_{m-1} x^{m-1}+\cdots+b_1 x+b_0}=\left\{\begin{array}{ll}\frac{a_n}{b_m}, & n=m, \\ 0, & n<m, \\ \infty, & n>m,\end{array}\right. limxbmxm+bm1xm1++b1x+b0anxn+an1xn1++a1x+a0=bman,0,,n=m,n<m,n>m, 其中 a n , b m a_n, b_m an,bm 均不

为 0 .

  • (3) lim ⁡ n → ∞ x n = { 0 , ∣ x ∣ < 1 , ∞ , ∣ x ∣ > 1 , 1 , x = 1 ,  不存在,  x = − 1 ; lim ⁡ n → ∞ e n x = { 0 , x < 0 , + ∞ , x > 0 , 1 , x = 0. \lim _{n \rightarrow \infty} x^n=\left\{\begin{array}{ll}0, & |x|<1, \\ \infty, & |x|>1, \\ 1, & x=1, \\ \text { 不存在, } & x=-1 ;\end{array} \lim _{n \rightarrow \infty} \mathrm{e}^{n x}= \begin{cases}0, & x<0, \\ +\infty, & x>0, \\ 1, & x=0 .\end{cases}\right. limnxn=0,,1, 不存在x<1,x>1,x=1,x=1;limnenx=0,+,1,x<0,x>0,x=0.
  • (4) 若 lim ⁡ g ( x ) = 0 , lim ⁡ f ( x ) = ∞ \lim g(x)=0, \lim f(x)=\infty limg(x)=0,limf(x)=, 且 lim ⁡ g ( x ) f ( x ) = A \lim g(x) f(x)=A limg(x)f(x)=A, 则有
    lim ⁡ [ 1 + g ( x ) ] f ( x ) = e A . \lim [1+g(x)]^{f(x)}=\mathrm{e}^A . lim[1+g(x)]f(x)=eA.

3. x → 0 x \rightarrow 0 x0 时常见的麦克劳林公式

sin ⁡ x = x − 1 3 ! x 3 + o ( x 3 ) , cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + o ( x 4 ) , tan ⁡ x = x + 1 3 x 3 + o ( x 3 ) , arcsin ⁡ x = x + 1 3 ! x 3 + o ( x 3 ) , arctan ⁡ x = x − 1 3 x 3 + o ( x 3 ) , ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + o ( x 3 ) , e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + o ( x 3 ) , ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + o ( x 2 ) . \begin{aligned} & \sin x=x-\frac{1}{3 !} x^3+o\left(x^3\right), \quad \cos x=1-\frac{1}{2 !} x^2+\frac{1}{4 !} x^4+o\left(x^4\right),\\ \\ & \tan x=x+\frac{1}{3} x^3+o\left(x^3\right), \quad \arcsin x=x+\frac{1}{3 !} x^3+o\left(x^3\right), \\ \\ & \arctan x=x-\frac{1}{3} x^3+o\left(x^3\right), \quad \ln (1+x)=x-\frac{1}{2} x^2+\frac{1}{3} x^3+o\left(x^3\right), \\ \\ & \mathrm{e}^x=1+x+\frac{1}{2 !} x^2+\frac{1}{3 !} x^3+o\left(x^3\right),(1+x)^a=1+a x+\frac{a(a-1)}{2 !} x^2+o\left(x^2\right) . \end{aligned} sinx=x3!1x3+o(x3),cosx=12!1x2+4!1x4+o(x4),tanx=x+31x3+o(x3),arcsinx=x+3!1x3+o(x3),arctanx=x31x3+o(x3),ln(1+x)=x21x2+31x3+o(x3),ex=1+x+2!1x2+3!1x3+o(x3),(1+x)a=1+ax+2!a(a1)x2+o(x2).

x → 0 x \rightarrow 0 x0 时,由以上公式可以得到以下几组“差函数”的等价无穷小代换式:

x − sin ⁡ x ∼ x 3 6 , tan ⁡ x − x ∼ x 3 3 , x − ln ⁡ ( 1 + x ) ∼ x 2 2 x-\sin x \sim \frac{x^3}{6}, \quad \tan x-x \sim \frac{x^3}{3}, \quad x-\ln (1+x) \sim \frac{x^2}{2} xsinx6x3,tanxx3x3,xln(1+x)2x2, arcsin ⁡ x − x ∼ x 3 6 , x − arctan ⁡ x ∼ x 3 3 \arcsin x-x \sim \frac{x^3}{6}, \quad x-\arctan x \sim \frac{x^3}{3} arcsinxx6x3,xarctanx3x3.

4. 基本导数公式

( x μ ) ′ = μ x μ − 1 ( μ 为 常 数 ) , ( a x ) ′ = a x ln ⁡ a ( a > 0 , a ≠ 1 ) , ( log ⁡ a x ) ′ = 1 x ln ⁡ a ( a > 0 , a ≠ 1 ) , ( ln ⁡ x ) ′ = 1 x , ( sin ⁡ x ) ′ = cos ⁡ x , ( cos ⁡ x ) ′ = − sin ⁡ x , ( arcsin ⁡ x ) ′ = 1 1 − x 2 , ( arccos ⁡ x ) ′ = − 1 1 − x 2 , ( tan ⁡ x ) ′ = sec ⁡ 2 x , ( cot ⁡ x ) ′ = − csc ⁡ 2 x , ( arctan ⁡ x ) ′ = 1 1 + x 2 , ( arccot ⁡ x ) ′ = − 1 1 + x 2 , ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x , ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x , [ ln ⁡ ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 , , [ ln ⁡ ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 \begin{array}{ll} \left(x^\mu\right)^{\prime}=\mu x^{\mu-1} ( \mu 为常数), & \left(a^x\right)^{\prime}=a^x \ln a(a>0, a \neq 1), \\ \\ \left(\log _a x\right)^{\prime}=\frac{1}{x \ln a}(a>0, a \neq 1) , & (\ln x)^{\prime}=\frac{1}{x}, \\ \\ (\sin x)^{\prime}=\cos x, & (\cos x)^{\prime}=-\sin x, \\ \\ (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^2}}, & (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^2}}, \\ \\ (\tan x)^{\prime}=\sec ^2 x, & (\cot x)^{\prime}=-\csc ^2 x, \\ \\ (\arctan x)^{\prime}=\frac{1}{1+x^2}, & (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^2}, \\ \\ (\sec x)^{\prime}=\sec x \tan x, & (\csc x)^{\prime}=-\csc x \cot x, \\ \\ {\left[\ln \left(x+\sqrt{x^2+1}\right)\right]^{\prime}=\frac{1}{\sqrt{x^2+1}},}, & {\left[\ln \left(x+\sqrt{x^2-1}\right)\right]^{\prime}=\frac{1}{\sqrt{x^2-1}}} \end{array} (xμ)=μxμ1(μ),(logax)=xlna1(a>0,a=1),(sinx)=cosx,(arcsinx)=1x2 1,(tanx)=sec2x,(arctanx)=1+x21,(secx)=secxtanx,[ln(x+x2+1 )]=x2+1 1,,(ax)=axlna(a>0,a=1),(lnx)=x1,(cosx)=sinx,(arccosx)=1x2 1,(cotx)=csc2x,(arccotx)=1+x21,(cscx)=cscxcotx,[ln(x+x21 )]=x21 1
三角函数六边形记忆法:
在这里插入图片描述

注: 变限积分求导公式.
F ( x ) = ∫ φ 2 ( x ) φ 1 ( x ) f ( t ) d t F(x)=\int_{\varphi_2(x)}^{\varphi_1(x)} f(t) \mathrm{d} t F(x)=φ2(x)φ1(x)f(t)dt, 其中 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续, 可导函数 φ 1 ( x ) \varphi_1(x) φ1(x) φ 2 ( x ) \varphi_2(x) φ2(x) 的值域在 [ a , b ] [a, b] [a,b] 上, 则在函数 φ 1 ( x ) \varphi_1(x) φ1(x) φ 2 ( x ) \varphi_2(x) φ2(x) 的公共定义域上有:
F ′ ( x ) = d d x [ ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t ] = f [ φ 2 ( x ) ] φ 2 ′ ( x ) − f [ φ 1 ( x ) ] φ 1 ′ ( x ) . F^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(t) \mathrm{d} t\right]=f\left[\varphi_2(x)\right] \varphi_2^{\prime}(x)-f\left[\varphi_1(x)\right] \varphi_1^{\prime}(x) . F(x)=dxd[φ1(x)φ2(x)f(t)dt]=f[φ2(x)]φ2(x)f[φ1(x)]φ1(x).

5. 几个重要函数的麦克劳林展开式

(1) e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) \mathrm{e}^x=1+x+\frac{1}{2 !} x^2+\cdots+\frac{1}{n !} x^n+o\left(x^n\right) ex=1+x+2!1x2++n!1xn+o(xn).

(2) sin ⁡ x = x − 1 3 ! x 3 + ⋯ + ( − 1 ) n 1 ( 2 n + 1 ) ! x 2 n + 1 + o ( x 2 n + 1 ) \sin x=x-\frac{1}{3 !} x^3+\cdots+(-1)^n \frac{1}{(2 n+1) !} x^{2 n+1}+o\left(x^{2 n+1}\right) sinx=x3!1x3++(1)n(2n+1)!1x2n+1+o(x2n+1).

(3) cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 − ⋯ + ( − 1 ) n 1 ( 2 n ) ! x 2 n + o ( x 2 n ) \cos x=1-\frac{1}{2 !} x^2+\frac{1}{4 !} x^4-\cdots+(-1)^n \frac{1}{(2 n) !} x^{2 n}+o\left(x^{2 n}\right) cosx=12!1x2+4!1x4+(1)n(2n)!1x2n+o(x2n).

(4) 1 1 − x = 1 + x + x 2 + ⋯ + x n + o ( x n ) , ∣ x ∣ < 1 \frac{1}{1-x}=1+x+x^2+\cdots+x^n+o\left(x^n\right),|x|<1 1x1=1+x+x2++xn+o(xn),x<1.

(5) 1 1 + x = 1 − x + x 2 − ⋯ + ( − 1 ) n x n + o ( x n ) , ∣ x ∣ < 1 \frac{1}{1+x}=1-x+x^2-\cdots+(-1)^n x^n+o\left(x^n\right),|x|<1 1+x1=1x+x2+(1)nxn+o(xn),x<1.

(6) ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) , − 1 < x ⩽ 1 \ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots+(-1)^{n-1} \frac{x^n}{n}+o\left(x^n\right),-1<x \leqslant 1 ln(1+x)=x2x2+3x3+(1)n1nxn+o(xn),1<x1.

(7) ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + ⋯ + a ( a − 1 ) ⋯ ( a − n + 1 ) n ! x n + (1+x)^a=1+a x+\frac{a(a-1)}{2 !} x^2+\cdots+\frac{a(a-1) \cdots(a-n+1)}{n !} x^n+ (1+x)a=1+ax+2!a(a1)x2++n!a(a1)(an+1)xn+ o ( x n ) o\left(x^n\right) o(xn).

6. 曲率和曲率半径计算公式

(1) 曲率

  • (1) (非参数方程) 曲线 y = f ( x ) y=f(x) y=f(x) 上任意一点 ( x , f ( x ) ) (x, f(x)) (x,f(x)) 处的曲率为
    K = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 .  K=\frac{\left|y^{\prime \prime}\right|}{\left[1+\left(y^{\prime}\right)^2\right]^{\frac{3}{2}}} \text {. } K=[1+(y)2]23y
  • (2) (参数方程) { x = x ( t ) , y = y ( t ) \left\{\begin{array}{l}x=x(t), \\ y=y(t)\end{array}\right. {x=x(t),y=y(t) 上任意一点的曲率为
    K = ∣ x ′ ( t ) y ′ ′ ( t ) − y ′ ( t ) x ′ ′ ( t ) ∣ { [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 } 3 2 . K=\frac{\left|x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)\right|}{\left\{\left[x^{\prime}(t)\right]^2+\left[y^{\prime}(t)\right]^2\right\}^{\frac{3}{2}}} . K={[x(t)]2+[y(t)]2}23x(t)y(t)y(t)x(t).
    参数方程求导:
    参数方程 { x = φ ( t ) y = ψ ( t ) \left\{\begin{array}{l}x=\varphi(t) \\ y=\psi(t)\end{array}\right. {x=φ(t)y=ψ(t)

d y d x = d y / d t d x / d t = ψ ′ ( t ) φ ′ ( t ) , 令 其 为 F ( t ) , \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)},令其为F(t),\\ dxdy=dx/dtdy/dt=φ(t)ψ(t),F(t),
d 2 y d x 2 = d ( d y d x ) d x = d ( d y d x ) / d t d x / d t = ψ ′ ′ ( t ) φ ′ ( t ) − ψ ′ ( t ) φ ′ ′ ( t ) [ φ ′ ( t ) ] 3 = d ( F ( t ) ) / d t d x / d t = F ′ ( t ) φ ′ ( t ) \frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{d\left(\frac{d y}{d x}\right) / d t}{d x / d t}=\frac{\psi^{\prime \prime}(t) \varphi^{\prime}(t)-\psi^{\prime}(t) \varphi^{\prime \prime}(t)}{\left[\varphi^{\prime}(t)\right]^{3}} = \frac{d(F(t))/dt}{dx/dt} = \frac{F^{\prime}(t)}{\varphi^{\prime}(t)} dx2d2y=dxd(dxdy)=dx/dtd(dxdy)/dt=[φ(t)]3ψ(t)φ(t)ψ(t)φ(t)=dx/dtd(F(t))/dt=φ(t)F(t)
可以记最后那个简单的式子

(2) 曲率半径
R = 1 K ( K ≠ 0 ) R=\frac{1}{K}(K \neq 0) R=K1(K=0)

  • 14
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值