高数 测试题库

day 1 (函数的概念与特性)

例 1.1 设 f ( x + 1 x ) = x + x 3 1 + x 4 , x ⩾ 2 f\left(x+\frac{1}{x}\right)=\frac{x+x^{3}}{1+x ^{4}}, x \geqslant 2 f(x+x1)=1+x4x+x3,x2, 则 f ( x ) = f(x)= f(x)=








例 1.2 设函数 f ( x ) f(x) f(x) 的定义域为 ( 0 , + ∞ ) (0,+\infty) (0,+), 且满足 2 f ( x ) + x 2 f ( 1 x ) = x 2 + 2 x 1 + x 2 2 f(x)+x^{2} f\left(\frac{1}{x}\right)=\frac{x^{2}+2 x}{\sqrt{1+x^{2}}} 2f(x)+x2f(x1)=1+x2 x2+2x, 则 f ( x ) = f(x)= f(x)=








1.1 设 f ( x ) f(x) f(x) 满足 2 f ( x ) + f ( 1 − x ) = x 2 2 f(x)+f(1-x)=x^2 2f(x)+f(1x)=x2, 则 f ( x ) = f(x)= f(x)=








例 1.3 求函数 y = f ( x ) = ln ⁡ ( x + x 2 + 1 ) y=f(x)=\ln (x+\sqrt{x^2+1}) y=f(x)=ln(x+x2+1 ) 的反函数 f − 1 ( x ) f^{-1}(x) f1(x) 的表达式及其定义域.:
奇函数








1.2 求函数 y = 1 2 ( e x − e − x ) y=\frac{1}{2}\left(e^x-e^{-x}\right) y=21(exex) 的反函数 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x)








例 1.4 设 f ( x ) = x 2 , f [ φ ( x ) ] = − x 2 + 2 x + 3 f(x)=x^2, f[\varphi(x)]=-x^2+2 x+3 f(x)=x2,f[φ(x)]=x2+2x+3, 且 φ ( x ) ⩾ 0 \varphi(x) \geqslant 0 φ(x)0, 求 φ ( x ) \varphi(x) φ(x) 及其定义域与值域








例 1.5 设 g ( x ) = { 2 − x , x ⩽ 0 , 2 + x , x > 0 , f ( x ) = { x 2 , x < 0 , − x − 1 , x ⩾ 0 , g(x)=\left\{\begin{array}{l}2-x, x \leqslant 0, \\ 2+x, x>0,\end{array} f(x)=\left\{\begin{array}{ll}x^{2}, & x<0, \\ -x-1, & x \geqslant 0,\end{array}\right.\right. g(x)={2x,x0,2+x,x>0,f(x)={x2,x1,x<0,x0, g [ f ( x ) ] = g[f(x)]= g[f(x)]=.







1.3 设 f ( x ) = 2 x + x 2 + 2 x + 1 , g ( x ) = { x + 2 , x ⩾ 0 x − 1 , x < 0 f(x)=2 x+\sqrt{x^2+2 x+1}, g(x)= \begin{cases}x+2, & x \geqslant 0 \\ x-1, & x<0\end{cases} f(x)=2x+x2+2x+1 ,g(x)={x+2,x1,x0x<0 g [ f ( x ) ] = g[f(x)]= g[f(x)]=








例 1.6 证明函数 f ( x ) = x 1 + x 2 f(x)=\frac{x}{1+x^{2}} f(x)=1+x2x ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 内有界.








例 1.7 设 f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上有定义, 任给 x 1 , x 2 , x 1 ≠ x 2 x_{1}, x_{2}, x_{1} \neq x_{2} x1,x2,x1=x2, 均有 ( x 1 − x 2 ) ⋅ [ f ( x 1 ) − f ( x 2 ) ] > 0 \left(x_{1}-x_{2}\right) \cdot\left[f\left(x_{1}\right)-f\left(x_{2}\right)\right]>0 (x1x2)[f(x1)f(x2)]>0,则以下函数一定单调增加的是 ( ) (\quad) ().
(A) ∣ f ( x ) ∣ |f(x)| f(x)
(B) f ( ∣ x ∣ ) f(|x|) f(x)
(C) f ( − x ) f(-x) f(x)
(D) − f ( − x ) -f(-x) f(x)








例 1.8 设对任意 x , y x, y x,y, 都有 f ( x + y ) = f ( x ) + f ( y ) f(x+y)=f(x)+f(y) f(x+y)=f(x)+f(y), 证明: f ( x ) f(x) f(x) 是奇函数.







1.5 设 f ( x ) = x x 2 , x ∈ R f(x)=x \sqrt{x^2}, \quad x \in R f(x)=xx2 ,xR
(1) 判别 f ( x ) f(x) f(x) 的奇偶性。
(2) 计算 ∫ − 1 1 ( x x 2 + 2 ) d x 计算\int_{-1}^1\left(x \sqrt{x^2}+2\right) d x 计算11(xx2 +2)dx.







1.6 设 f ( x ) = 2 x − 1 2 x + 1 , x ∈ R f(x)=\frac{2^x-1}{2^x+1}, x \in R f(x)=2x+12x1,xR
(1) 判别 f ( x ) f(x) f(x) 的奇偶性
(2) 计算 ∫ − 1 1 1 2 x + 1 d x \int_{-1}^1 \frac{1}{2^x+1} d x 112x+11dx.

day 2 (函数图像,函数极限的概念性质(上))

例 1.10 设 0 < x < 1 2 0<x<\frac{1}{2} 0<x<21, 求 y ( x ) = x 6 ( 1 − x ) 2 ( 1 − 2 x ) 4 y(x)=x^{6}(1-x)^{2}(1-2 x)^{4} y(x)=x6(1x)2(12x)4 的最大值点.








1.7 设某项目用于研发和宣传的总成本为 a a a(万元),当研发和宣发使用成本分别为 x x x(万元)和 y y y(万元)时,收益为 R = 2 x 1 3 y 1 2 R=2 x^{\frac{1}{3}} y^{\frac{1}{2}} R=2x31y21,则收益最大时,研发所用成本为?








例 1.11 已知 e x = ∑ n = 0 ∞ x n n ! , x ∈ R \mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}, x \in \mathbf{R} ex=n=0n!xn,xR, 则 2 x = ( ) 2^{x}=(\quad) 2x=().
(A) ∑ n = 1 ∞ ( x ln ⁡ 2 ) n n ! \sum_{n=1}^{\infty} \frac{(x \ln 2)^{n}}{n !} n=1n!(xln2)n
(B) ∑ n = 0 ∞ ( x ln ⁡ 2 ) n n ! \sum_{n=0}^{\infty} \frac{(x \ln 2)^{n}}{n !} n=0n!(xln2)n
(C) ∑ n = 1 ∞ ( ln ⁡ 2 ) x n n ! \sum_{n=1}^{\infty} \frac{(\ln 2) x^{n}}{n !} n=1n!(ln2)xn
(D) ∑ n = 0 ∞ ( ln ⁡ 2 ) x n n ! \sum_{n=0}^{\infty} \frac{(\ln 2) x^{n}}{n !} n=0n!(ln2)xn








例 1.14 已知 lim ⁡ x → 0 f ( x ) x 2 \lim _{x \rightarrow 0} \frac{f(x)}{x^{2}} limx0x2f(x) 存在, 且函数
f ( x ) = x − sin ⁡ x x + x 2 lim ⁡ x → 0 f ( x ) 1 − cos ⁡ x , f(x)=\frac{x-\sin x}{x}+x^{2} \lim _{x \rightarrow 0} \frac{f(x)}{1-\cos x}, f(x)=xxsinx+x2limx01cosxf(x),
lim ⁡ x → 0 f ( x ) x 2 = ( ) \lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=(\quad) limx0x2f(x)=().
(A) − 1 3 -\frac{1}{3} 31
(B) 1 3 \frac{1}{3} 31
(C) 1 6 \frac{1}{6} 61
(D) − 1 6 -\frac{1}{6} 61








例 1.15 当 x → 1 x \rightarrow 1 x1 时, 函数 e 1 x − 1 ln ⁡ ∣ 1 + x ∣ ( e x − 1 ) ( x − 2 ) \frac{\mathrm{e}^{\frac{1}{x-1}} \ln |1+x|}{\left(\mathrm{e}^{x}-1\right)(x-2)} (ex1)(x2)ex11ln∣1+x 的极限 ( ) (\quad) ().
(A) 等于 1
(B) 等于 0
(C) 为 ∞ \infty
(D) 不存在且不为 ∞ \infty








1.10  当  x → 1 时 函数  f ( x ) = ∣ x ∣ x − 1 x ( x + 1 ) ln ⁡ ∣ x ∣  的极限为  \text { 当 } x \rightarrow1时 \text { 函数 } f(x)=\frac{|x|^x-1}{x(x+1) \ln |x|} \text { 的极限为 }   x1 函数 f(x)=x(x+1)lnxxx1 的极限为 
(A) 为 3
(B) 为 2
(C) 为 1
(D) 不存在








例 1.16 设 g ( x ) = { 2 − x , x ⩽ 0 , 2 + x , x > 0 , f ( x ) = { x 2 , x < 0 , − x − 1 , x ⩾ 0 , g(x)=\left\{\begin{array}{ll}2-x, & x \leqslant 0, \\ 2+x, & x>0,\end{array} f(x)=\left\{\begin{array}{ll}x^{2}, & x<0, \\ -x-1, & x \geqslant 0,\end{array}\right.\right. g(x)={2x,2+x,x0,x>0,f(x)={x2,x1,x<0,x0, lim ⁡ x → 0 g [ f ( x ) ] ( ) \lim _{x \rightarrow 0} g[f(x)](\quad) limx0g[f(x)]().
(A) 为 3
(B) 为 2
(C) 为 1
(D) 不存在








1.11 f ( x ) = 2 x + x 2 + 2 x + 1 f(x)=2 x+\sqrt{x^2+2 x+1} f(x)=2x+x2+2x+1 , g ( x ) = { x + 2 , x ⩾ 0 x − 1 , x < 0 g(x)=\left\{\begin{array}{l}x+2, x \geqslant 0 \\x-1, x<0\end{array}\right. g(x)={x+2,x0x1,x<0
lim ⁡ x → − 1 3 g [ f ( x ) ] = \lim _{x \rightarrow-\frac{1}{3}} g[f(x)]= limx31g[f(x)]=








证明:
(07)如果 lim ⁡ x → x 0 f ( x ) = A \lim _{x \rightarrow x_0} f(x)=A limxx0f(x)=A, 则存在正常数 M M M δ \delta δ, 使得当 0 < ∣ x − x 0 ∣ < δ 0<\left|x-x_0\right|<\delta 0<xx0<δ 时, 有 ∣ f ( x ) ∣ ⩽ M |f(x)| \leqslant M f(x)M.







day 3 (函数图像,函数极限的概念性质(下))

例 1.17 在下列区间内, 函数 f ( x ) = x sin ⁡ ( x − 3 ) ( x − 1 ) ( x − 3 ) 2 f(x)=\frac{x \sin (x-3)}{(x-1)(x-3)^{2}} f(x)=(x1)(x3)2xsin(x3) 有界的是().
(A) ( − 2 , 1 ) (-2,1) (2,1)
(B) ( − 1 , 0 ) (-1,0) (1,0)
(C) ( 1 , 2 ) (1,2) (1,2)
(D) ( 2 , 3 ) (2,3) (2,3)

例 1.18 已知 f ( x ) f(x) f(x) x = 0 x=0 x=0 的某个邻域内连续, 且 lim ⁡ x → 0 f ( x ) 1 − cos ⁡ x = − 1 \lim _{x \rightarrow 0} \frac{f(x)}{1-\cos x}=-1 limx01cosxf(x)=1, 则存在 δ > 0 , ( ) \delta>0,(\quad) δ>0,().

(A) 当 x ∈ ( − δ , 0 ) x \in(-\delta, 0) x(δ,0) 时, f ( x ) > 0 f(x)>0 f(x)>0; 当 x ∈ ( 0 , δ ) x \in(0, \delta) x(0,δ) 时, f ( x ) < 0 f(x)<0 f(x)<0

(B) 当 x ∈ ( − δ , 0 ) x \in(-\delta, 0) x(δ,0) 时, f ( x ) < 0 f(x)<0 f(x)<0; 当 x ∈ ( 0 , δ ) x \in(0, \delta) x(0,δ) 时, f ( x ) > 0 f(x)>0 f(x)>0

(C) 当 x ∈ ( − δ , 0 ) x \in(-\delta, 0) x(δ,0) 时, f ( x ) > 0 f(x)>0 f(x)>0; 当 x ∈ ( 0 , δ ) x \in(0, \delta) x(0,δ) 时, f ( x ) > 0 f(x)>0 f(x)>0

(D) 当 x ∈ ( − δ , 0 ) x \in(-\delta, 0) x(δ,0) 时, f ( x ) < 0 f(x)<0 f(x)<0; 当 x ∈ ( 0 , δ ) x \in(0, \delta) x(0,δ) 时, f ( x ) < 0 f(x)<0 f(x)<0

例 1.19 设 x → 0 x \rightarrow 0 x0 时, e tan ⁡ x − e sin ⁡ x \mathrm{e}^{\tan x}-\mathrm{e}^{\sin x} etanxesinx x n x^{n} xn 是同阶无穷小, 则 n n n ( ) (\quad) ().

(A) 1
(B) 2
(C) 3
(D) 4

例 1.20 证明:
(1) 若 lim ⁡ f ( x ) g ( x ) = A \lim \frac{f(x)}{g(x)}=A limg(x)f(x)=A, 且 lim ⁡ g ( x ) = 0 \lim g(x)=0 limg(x)=0, 则 lim ⁡ f ( x ) = 0 \lim f(x)=0 limf(x)=0

(2) 若 lim ⁡ f ( x ) g ( x ) = A ≠ 0 \lim \frac{f(x)}{g(x)}=A \neq 0 limg(x)f(x)=A=0, 且 lim ⁡ f ( x ) = 0 \lim f(x)=0 limf(x)=0, 则 lim ⁡ g ( x ) = 0 \lim g(x)=0 limg(x)=0.

例 1.21 设 lim ⁡ x → 0 sin ⁡ x e x − a ( cos ⁡ x − b ) = 5 \lim _{x \rightarrow 0} \frac{\sin x}{\mathrm{e}^{x}-a}(\cos x-b)=5 limx0exasinx(cosxb)=5, 则 b = ( ) b=(\quad) b=().
(A) -4
(B) -3
(C) -2
(D) -1

例 1.22 证明:
(1) 当 x → 0 x \rightarrow 0 x0 时, ln ⁡ ( x + 1 + x 2 ) ∼ x \ln \left(x+\sqrt{1+x^{2}}\right) \sim x ln(x+1+x2 )x;

(2) 当 x → 0 x \rightarrow 0 x0 时, 1 − ( cos ⁡ x ) a ∼ 1 2 a x 2 , a ≠ 0 1-(\cos x)^{a} \sim \frac{1}{2} a x^{2}, a \neq 0 1(cosx)a21ax2,a=0.

答案

(07)如果 lim ⁡ x → x 0 f ( x ) = A \lim _{x \rightarrow x_0} f(x)=A limxx0f(x)=A, 则存在正常数 M M M δ \delta δ, 使得当 0 < ∣ x − x 0 ∣ < δ 0<\left|x-x_0\right|<\delta 0<xx0<δ 时, 有 ∣ f ( x ) ∣ ⩽ M |f(x)| \leqslant M f(x)M.

证明: lim ⁡ x → x 0 f ( x ) = A ⇔ ∀ ε > 0 ,  ∃ δ > 0 , 当  0 < ∣ x − x 0 ∣ < δ  吋,  ∣ f ( x ) − A ∣ < ε ⇒ ∣ f ( x ) ∣ = ∣ f ( x ) − A + A ∣ ⩽ ∣ f ( x ) − A ∣ + ∣ A ∣ 取 ε = 1 , ∣ f ( x ) ∣ ⩽ 1 + ∣ A ∣ =  令  M .  \begin{aligned} & \text {证明:} \quad \lim _{x \rightarrow x_0} f(x)=A \Leftrightarrow \\ & \forall \varepsilon>0 \text {, } \exists \delta>0 \text {, 当 } 0<\left|x-x_0\right|<\delta \text { 吋, }|f(x)-A|<\varepsilon \\ & \Rightarrow|f(x)|=|f(x)-A+A| \leqslant|f(x)-A|+|A| \\ & {取} \varepsilon=1,|f(x)| \leqslant1+|A| \stackrel{\text { 令 }}{=} M \text {. } \\ & \end{aligned} 证明:xx0limf(x)=Aε>0δ>0 0<xx0<δ f(x)A<εf(x)=f(x)A+Af(x)A+Aε=1,f(x)1+A=  M

  • 16
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值