纪念碑

题目描述

2034年,纪念中学决定修建校庆100周年纪念碑,作为杰出校友的你被找了过来,帮校方确定纪念碑的选址.
纪念中学的土地可以看作是一个长为n,宽为m的矩形.它由n* m个1*1的正方形组成,其中左下角的正方形的坐标为(1,1),右上角的正方形的坐标为(n, m).其中有一些土地已经被用来修建建筑物,每一幢建筑物都可以看做是一个左下角为(x1,y1),右上角为(x2,y2)的矩形.
纪念碑可以看作是一个正方形.校方希望你找出一块最大的正方形区域供他们参考.

Input

每一组数据的第一行包含三个整数n,m和p,分别表示学校的长,宽以及建筑物的数量.
接下来的p行,每行包含四个整数x1,y1,x2,y2,分别表示每一幢建筑物左下角以及右上角的坐标.

Output

输出一个数,表示可能的最大边长.

样例输入

13 5 8
8 4 10 4
4 3 4 4
10 2 12 2
8 2 8 4
2 4 6 4
10 3 10 4
12 3 12 4
2 2 4 2

样例输出

3

数据范围

对于30%的数据,p<=1000.
对于70%的数据,p<=30000.
对于100%的数据,p<=400000,m,n<=1000000.

————————————我是华丽的分割线————————————————

第一次粘贴题目描述,因为实在找不到原题。。。

我们可以用扫描线。在x轴放置l与r,然后我们找出在l到r中可以贯穿l与r的最大长度(可以用线段树来维护,加入时就加障碍,减去时就减障碍)。

  1. r − l + 1 < = m a x l r-l+1<=maxl rl+1<=maxl   肯定可以放置,更新答案。
  2. r − l + 1 > m a x l r-l+1>maxl rl+1>maxl   l与r都加1。因为我们可以证明,r减去1与l加1的搭配一定不是最优的。首先我们知道,l与r先开始都在1位置,若无法满足条件,他们的距离是不会变的。这也就意味着,l与r之间的距离,是一定可以取到的。那我们为何不向后推呢?

详见代码。

#include<cstdio>
#include<vector>
#include<iostream>
#define Int const int
using namespace std;

const int N = 1000002;
int ans, n, m, p, st[N << 2], ls[N << 2], rs[N << 2], la[N << 2];
struct node {
	int l, r;
	node() {}
	node(const int L, const int R) {
		l = L;
		r = R; 
	}
};
vector <node> add[N], del[N];

void build(Int o, Int l, Int r) {
	st[o] = ls[o] = rs[o] = r - l + 1;
	if(l == r) return;
	int mid = l + r >> 1;
	build(o << 1, l, mid);
	build(o << 1 | 1, mid + 1, r);
}

void pushUp(Int o, Int l, Int r) {
	if(la[o]) {
		st[o] = ls[o] = rs[o] = 0;
		return;
	}
	if(l == r) {
		st[o] = ls[o] = rs[o] = 1;
		return;
	}
	int mid = l + r >> 1;
	ls[o] = ls[o << 1] + (ls[o << 1] == (mid - l + 1)) * ls[o << 1 | 1];
	rs[o] = rs[o << 1 | 1] + (rs[o << 1 | 1] == (r - mid)) * rs[o << 1];
	st[o] = max(rs[o << 1] + ls[o << 1 | 1], max(st[o << 1], st[o << 1 | 1]));
}

void change(Int o, Int l, Int r, Int L, Int R, Int k) {
	if(l > R || r < L) return;
	if(l >= L && r <= R) {
		la[o] += k;
		pushUp(o, l, r);
		return;
	}
	int mid = l + r >> 1;
	change(o << 1, l, mid, L, R, k);
	change(o << 1 | 1, mid + 1, r, L, R, k);
	pushUp(o, l, r);
}

int main() {
	int a, b, c, d, l = 1, r = 1;
	scanf("%d %d %d", &n, &m, &p);
	for(int i = 1; i <= p; ++ i) {
		scanf("%d %d %d %d", &a, &b, &c, &d);
		add[a].push_back(node(b, d));
		del[c].push_back(node(b, d));
	}
	build(1, 1, m);
	while(r <= n) {
		for(int i = 0; i < add[r].size(); ++ i) change(1, 1, m, add[r][i].l, add[r][i].r, 1);
		ans = max(ans, min(r - l + 1, st[1]));
		if(st[1] < r - l + 1) {
			for(int i = 0; i < del[l].size(); ++ i) change(1, 1, m, del[l][i].l, del[l][i].r, -1);
			++ l;
		}
		++ r;
	}
	printf("%d\n", ans);
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值