题目描述
2034年,纪念中学决定修建校庆100周年纪念碑,作为杰出校友的你被找了过来,帮校方确定纪念碑的选址.
纪念中学的土地可以看作是一个长为n,宽为m的矩形.它由n* m个1*1的正方形组成,其中左下角的正方形的坐标为(1,1),右上角的正方形的坐标为(n, m).其中有一些土地已经被用来修建建筑物,每一幢建筑物都可以看做是一个左下角为(x1,y1),右上角为(x2,y2)的矩形.
纪念碑可以看作是一个正方形.校方希望你找出一块最大的正方形区域供他们参考.
Input
每一组数据的第一行包含三个整数n,m和p,分别表示学校的长,宽以及建筑物的数量.
接下来的p行,每行包含四个整数x1,y1,x2,y2,分别表示每一幢建筑物左下角以及右上角的坐标.
Output
输出一个数,表示可能的最大边长.
样例输入
13 5 8
8 4 10 4
4 3 4 4
10 2 12 2
8 2 8 4
2 4 6 4
10 3 10 4
12 3 12 4
2 2 4 2
样例输出
3
数据范围
对于30%的数据,p<=1000.
对于70%的数据,p<=30000.
对于100%的数据,p<=400000,m,n<=1000000.
————————————我是华丽的分割线————————————————
第一次粘贴题目描述,因为实在找不到原题。。。
我们可以用扫描线。在x轴放置l与r,然后我们找出在l到r中可以贯穿l与r的最大长度(可以用线段树来维护,加入时就加障碍,减去时就减障碍)。
- r − l + 1 < = m a x l r-l+1<=maxl r−l+1<=maxl 肯定可以放置,更新答案。
- r − l + 1 > m a x l r-l+1>maxl r−l+1>maxl l与r都加1。因为我们可以证明,r减去1与l加1的搭配一定不是最优的。首先我们知道,l与r先开始都在1位置,若无法满足条件,他们的距离是不会变的。这也就意味着,l与r之间的距离,是一定可以取到的。那我们为何不向后推呢?
详见代码。
#include<cstdio>
#include<vector>
#include<iostream>
#define Int const int
using namespace std;
const int N = 1000002;
int ans, n, m, p, st[N << 2], ls[N << 2], rs[N << 2], la[N << 2];
struct node {
int l, r;
node() {}
node(const int L, const int R) {
l = L;
r = R;
}
};
vector <node> add[N], del[N];
void build(Int o, Int l, Int r) {
st[o] = ls[o] = rs[o] = r - l + 1;
if(l == r) return;
int mid = l + r >> 1;
build(o << 1, l, mid);
build(o << 1 | 1, mid + 1, r);
}
void pushUp(Int o, Int l, Int r) {
if(la[o]) {
st[o] = ls[o] = rs[o] = 0;
return;
}
if(l == r) {
st[o] = ls[o] = rs[o] = 1;
return;
}
int mid = l + r >> 1;
ls[o] = ls[o << 1] + (ls[o << 1] == (mid - l + 1)) * ls[o << 1 | 1];
rs[o] = rs[o << 1 | 1] + (rs[o << 1 | 1] == (r - mid)) * rs[o << 1];
st[o] = max(rs[o << 1] + ls[o << 1 | 1], max(st[o << 1], st[o << 1 | 1]));
}
void change(Int o, Int l, Int r, Int L, Int R, Int k) {
if(l > R || r < L) return;
if(l >= L && r <= R) {
la[o] += k;
pushUp(o, l, r);
return;
}
int mid = l + r >> 1;
change(o << 1, l, mid, L, R, k);
change(o << 1 | 1, mid + 1, r, L, R, k);
pushUp(o, l, r);
}
int main() {
int a, b, c, d, l = 1, r = 1;
scanf("%d %d %d", &n, &m, &p);
for(int i = 1; i <= p; ++ i) {
scanf("%d %d %d %d", &a, &b, &c, &d);
add[a].push_back(node(b, d));
del[c].push_back(node(b, d));
}
build(1, 1, m);
while(r <= n) {
for(int i = 0; i < add[r].size(); ++ i) change(1, 1, m, add[r][i].l, add[r][i].r, 1);
ans = max(ans, min(r - l + 1, st[1]));
if(st[1] < r - l + 1) {
for(int i = 0; i < del[l].size(); ++ i) change(1, 1, m, del[l][i].l, del[l][i].r, -1);
++ l;
}
++ r;
}
printf("%d\n", ans);
return 0;
}