Python应用-Numpy数据结构详解
概念介绍
numpy是python的一个扩充程序库,支持高阶大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数字函数库。
对于数据的运算,用矩阵会比python自带的字典或者列表快很多。
主要应用有:
数据分析 机器学习 深度学习
这里我们主要介绍一下numpy的数据结构( 内容来自NumPy菜鸟教程)
数据类型对象(dtype)
数据类型对象是用来描述与数组对应的内存区域如何使用,这依赖如下几个方面:
数据的类型(整数,浮点数或者 Python 对象)
数据的大小(例如, 整数使用多少个字节存储)
数据的字节顺序(小端法或大端法)
在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分
如果数据类型是子数组,它的形状和数据类型
字节顺序是通过对数据类型预先设定"<“或”>“来决定的。”<“意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。”>"意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。
dtype对象是使用以下语法构造的:
numpy.dtype(object,align,copy)
object - 要转换为的数据类型对象
align - 如果为 true,填充字段使其类似 C 的结构体。
copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用
我们通过以下实例来理解:
实例1
import numpy as np
#使用标量类型
dt=np.dtype(np.int32)
print(dt)
---------------------------------------------------------------------------------------------------
#输出结果为
int32
实例2
import numpy as np
# int8, int16, int32, int64 四种数据类型可以使用字符串'i1','i2','i4','i8'代替
dt=np.dtype('i4')
print(dt)
----------------------------------------------------------------------------