深度学习算法及原理
三景页三景页
逗比博士爱写搞笑知识博文
展开
-
CNN实战之如何分析影评-好看又有趣的讲解
CNN实战之如何分析影评-好看又有趣的讲解前言认识影评数据集了解TextCNN模型获取影评数据生成文本数据集生成TextCNN模型评估模型前言话说老王买了两张电影票打算请女神小丽去看电影,老王希望看完电影趁着热度可以和小丽的关系更进一步。于是老王买了两张最近大火的《剩女日记》,看完电影,效果喜人,老王差点又做了单身狗。。。认识影评数据集为了杜绝这种乌龙事件的再度发生,老王决定通过大数据分析的手段对上映的电影进行一个预筛分,精准挑选优质电影。通常而言,总会有一些人通过某些特殊手段提前了解到上映电影原创 2020-09-23 08:00:15 · 16918 阅读 · 0 评论 -
可变形卷积从概念到实现过程
可变形卷积是如何实现的?什么是可变形卷积?为什么要可变形卷积?如何实现可变形卷积?什么是可变形卷积?可变形卷积是指卷积核在每一个元素上额外增加了一个参数方向参数,这样卷积核就能在训练过程中扩展到很大的范围。上图来自论文Deformable Convolutional Networks上图中(a)是传统的标准卷积核,尺寸为3x3(图中绿色的点);(b)就是我们今天要谈论的可变形卷积,通...原创 2020-02-09 23:19:16 · 66684 阅读 · 22 评论 -
卷积神经网络进阶用法---残差网络如何解决梯度消失问题
卷积神经网络进阶用法---变形卷积核?分离卷积核?。。。我在三个月前写了关于卷积神经网络的系列文章,很短时间内就有了上千阅读量,深感荣幸。说明当前读者对深度学习的关注度是相当高的,之前的系列文章主要是关于卷积神经网络的基础概念介绍。其实实际工作中,卷积神经网络有很多的变形和进化,作者通过阅读大量的文献,整理出来一些心得,写在这里与诸君分享。如有错误,还请诸位大神指正。系列文章传送门:CNN卷...原创 2020-02-06 13:24:06 · 22153 阅读 · 1 评论 -
深度学习:AE自编码器详细解读(图文并茂,值得一看)
深度学习:AE自编码器详细解读(图文并茂,值得一看)本文参照了大量的网上文献,提取出了关于AE自编码器最重要的概念部分整理而成,为了增加文章的可读性,文章搭配了大量的插图。首先跟大家展示一下本文的流程:如上所示,本文分为三个大的段落,其中每个大段落又包含详细的分支,且看下面详细分解。自编码的过程简单的说可以分为两部分:输入到隐层的编码过程和隐层到输出的解码过程。那么这个过程有什么意...原创 2020-02-02 22:45:21 · 29600 阅读 · 3 评论 -
深度学习:对抗网络GAN的代码实现流程详细解读(超详细,必看)
深度学习:对抗网络GAN的实现流程(超详细)写在前面的话GAN可以用任何形式的generator和discriminator,不一定非得使用神经网络。而神经网络被广泛使用的主要原因是它一种通用函数逼近算法(universal function approximator),即我们能够使用大量节点的神经网络来模拟任何非线性的Input与Output之间的函数,相对其他方法具有更高的自由度,不会因...原创 2020-02-01 11:37:48 · 16350 阅读 · 6 评论 -
深度学习:GAN 对抗网络原理详细解析(零基础必看)
深度学习:GAN 对抗网络原理详细解析(零基础必看)什么是GAN网络GAN的意义及应用场景GAN的基本网络结构如何优化网络(定义损失)GAN网络的局限性一个小栗子什么是GAN网络GAN的全称是Generative adversarial network,中文翻译过来就是对抗式神经网络。对抗神经网络其实是两个网络的组合,可以理解为一个网络生成模拟数据(生成网络Generator),另一个网络判断...原创 2020-01-30 20:20:46 · 52784 阅读 · 5 评论 -
深度前馈网络学习方法
深度前馈网络知识点详细梳理什么是深度前馈网络什么是深度前馈网络深度前馈网络(deep feedforward network),也叫做前馈神经网络(feedforward neurnal network)或者多层感知机(multilayer perceptron, MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数f*。例如,对于分类器,y=f*(x)将输入x映射到一个类别y。前馈网...原创 2020-01-09 15:05:13 · 1861 阅读 · 1 评论 -
深度学习之RNN
深度学习之RNNRNN基本概述RNN的优势及结构形式RNN的前向传播过程BPTT算法LSTMGRU:LSTM的变体双向RNNRNN基本概述我们首先看一下百度百科对于RNN的解释:循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(re...原创 2019-12-07 17:36:48 · 1251 阅读 · 0 评论 -
通俗易懂的讲解Softmax
通俗易懂的讲解Softmax什么是SoftmaxSoftmax分类过程什么是SoftmaxSoftmaxSoftmaxSoftmax是机器学习中很重要的分类函数。通常位于神经网络的最后一层,它的作用是将前面输出层的数据转换为概率分布,这个概率分布的特点就是:任意事件发生的概率在0-1之间,且所有事件发生的概率总和为1,并且总有一个事件会发生。假设原始的神经网络输出为y1,y2....yny_...原创 2019-11-18 23:12:40 · 930 阅读 · 0 评论 -
聊一聊卷积网络开山鼻祖-LeNet
123原创 2019-11-15 20:01:49 · 684 阅读 · 1 评论 -
深度学习:白话解释ResNet残差网络
什么是残差网络(ResNet)?残差原理类似于画画临摹原创 2019-11-14 00:55:33 · 3203 阅读 · 1 评论 -
深度学习:详细说明GoogleNet网络结构
大话经典CNN结构GoogleNet原创 2019-11-13 00:51:04 · 3916 阅读 · 2 评论 -
啥也不会照样看懂交叉熵损失函数
聊一聊损失函数什么是损失函数损失函数重要吗有哪些损失函数什么是损失函数损失函数(loss function)是用来估量模型的预测值与真实值的不一致程度,它是一个非负函数,记为一般来说,损失函数越小,模型的鲁棒性越好。损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数表示预测值与真实值之间的差异,结构风险损失函数是指经验风险损失函数加上正则化。一般形式为:θ=argminθ1N∑...原创 2019-10-26 01:25:14 · 7530 阅读 · 4 评论 -
说一说激活函数是个啥
说一说激活函数是个啥为什么要用激活函数激活函数的种类总结什么是激活函数我们知道,在深度学习中,我们训练一个神经网络的过程是,首先输入数据,然后分别对每个输入和输出对分配权值。我们把输入数据和权值相乘并进行累加,再加上一个偏置量,就得到了一个输出的结果。但是这个过程是线性的,而激活函数的作用就是把这些线性信号转化为非线性,而这种非线性使得我们能够学习到输入与输出之间任意复杂的变换关系。为什么...原创 2019-10-24 22:39:04 · 708 阅读 · 1 评论 -
深度学习:Dropout如何解决过拟合
dropout什么是dropout参考文献https://blog.csdn.net/fu6543210/article/details/84450890什么是dropout我们知道,典型的神经网络其训练流程是将输入通过网络进行正向传导,然后将误差进行反向传播。Dropout就是针对这一过程之中,随机地删除隐藏层的部分单元,进行上述过程。综合而言,上述过程可以分步骤为:随机删除网络中的一...原创 2019-10-24 01:00:09 · 2065 阅读 · 1 评论 -
白话解释正则化原理
白话解释正则化原理为什么要正则化如何正则化L1与L2正则化的区别为什么要正则化我们在使用某个训练集训练机器学习模型的过程中,通常会计算在模型训练集上的损失函数来度量训练误差,损失越小,说明模型训练的越好。但是在实际情况中,我们不仅仅是要求模型在训练集上表现好,我们更希望的是模型在未得到训练的数据集上也有良好的表现,这种在未知的数据集上表现良好的能力称为泛化。我们当然希望泛化误差越小越好。但...原创 2019-10-23 01:15:39 · 2822 阅读 · 2 评论 -
CNN卷积神经网络原理详解(下)
CNN卷积神经网络原理详解(下)反向传播反向传播前面讲解了卷积神经网络的网络基本架构。我们在实际运算的时候会发现,随着计算次数的增加,我们的输出结果与我们的预期结果会不断的逼近。这是因为网络中的权重参数在不断的调整,那么参数是如何调整的?这就涉及到一个反向传播的问题。反向传播其实是神经网络的一个基础,下面我通过一个简单的示例带大家详细了解一下这个数学过程。前向传播算法...原创 2019-10-21 03:46:16 · 27831 阅读 · 10 评论 -
CNN卷积神经网络原理详解(中)
CNN卷积神经网络原理详解(中)卷积神经网络与全连接神经网络的比较卷积运算的数学解释卷积计算的工作模式卷积神经网络与全连接神经网络的比较卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。 它包括卷积层(convolutional layer)和池化层(pooling...原创 2019-10-19 22:25:42 · 30896 阅读 · 0 评论 -
CNN卷积神经网络原理详解(上)
CNN卷积神经网络原理详解(上)前言卷积神经网络的生物背景我们要让计算机做什么?卷积网络第一层全连接层训练前言卷积网络(convolutional network),也叫作卷积神经网络(convolutional neural network,CNN),是一种专门用来处理具有类似网格结构的数据的神经网络。卷积网络在诸多应用领域都表现优异。‘卷积神经网络’一词表明该网络使用了卷积(convolu...原创 2019-10-19 02:33:08 · 47263 阅读 · 4 评论