REINFORCE算法

1. 算法原理

这是一种策略学习算法。
策略学习的关键点是使用策略梯度定理,求取优化目标 J ( θ ) J(\boldsymbol{\theta}) J(θ)最大值。
J ( θ ) = E S [ V π ( S ) ] J(\boldsymbol{\theta})=\mathbb{E}_{S}\left[V_{\pi}(S)\right] J(θ)=ES[Vπ(S)]

这就需要用到策略梯度定理,对于目标函数更新 θ \theta θ做梯度上升。
而在实际应用中,通常使用近似策略梯度,使用蒙特卡洛抽样计算得到的随机梯度来代替原目标函数梯度。
随机梯度表达式为:
g ( s , a ; θ ) ≜ Q π ( s , a ) ⋅ ∇ θ ln ⁡ π ( a ∣ s ; θ ) \boldsymbol{g}(s, a ; \boldsymbol{\theta}) \triangleq Q_{\pi}(s, a) \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(a \mid s ; \boldsymbol{\theta}) g(s,a;θ)Qπ(s,a)θlnπ(as;θ)

随后,依照随机梯度做梯度上升更新 θ \boldsymbol{\theta} θ,也就是 θ ← θ + β ∗ g ( s , a ; θ ) \boldsymbol{\theta}\leftarrow\boldsymbol{\theta}+\beta*\boldsymbol{g}(s, a ; \boldsymbol{\theta}) θθ+βg(s,a;θ)
然而在实际情况下随机梯度中的 Q π ( s , a ) Q_{\pi}(s, a) Qπ(s,a)一项并不能被获取,由此就引申出了两种估计方法,分别是REINFORCE与Actor-Critic。
REINFORCE算法用实际观测的回报 u t u_t ut近似估计动作价值函数 Q π ( s , a ) Q_{\pi}(s, a) Qπ(s,a),即将随机梯度更换为
g ~ ( s t , a t ; θ ) = u t ⋅ ∇ θ ln ⁡ π ( a t ∣ s t ; θ ) \tilde{\boldsymbol{g}}\left(s_{t}, a_{t} ; \boldsymbol{\theta}\right)=u_{t} \cdot \nabla_{\boldsymbol{\theta}} \ln \pi\left(a_{t} \mid s_{t} ; \boldsymbol{\theta}\right) g~(st,at;θ)=utθlnπ(atst;θ)

2. 算法伪代码

REINFORCE伪代码
翻译:当前策略网络控制agent玩完一遍全流程,获得所有的三元组 s i , a i , r i s_i,a_i,r_i si,ai,ri,随后计算回报值 u t u_t ut,然后计算梯度 ∇ θ ln ⁡ π ( a t ∣ s t ; θ n o w ) \nabla_{\boldsymbol{\theta}} \ln \pi\left(a_{t} \mid s_{t} ; \boldsymbol{\theta}_{now}\right) θlnπ(atst;θnow),按照梯度上升更新 θ \boldsymbol{\theta} θ θ new  ← θ now  + β ⋅ ∑ t = 1 n γ t − 1 ⋅ u t ⋅ ∇ θ ln ⁡ π ( a t ∣ s t ; θ now  ) ⏟ 即随机梯度  g ~ ( s t , a t ; θ now  ) \boldsymbol{\theta}_{\text {new }} \leftarrow \boldsymbol{\theta}_{\text {now }}+\beta \cdot \sum_{t=1}^{n} \gamma^{t-1} \cdot \underbrace{u_{t} \cdot \nabla_{\boldsymbol{\theta}} \ln \pi\left(a_{t} \mid s_{t} ; \boldsymbol{\theta}_{\text {now }}\right)}_{\text {即随机梯度 } \tilde{\boldsymbol{g}}\left(s_{t}, a_{t} ; \boldsymbol{\theta}_{\text {now }}\right)} θnew θnow +βt=1nγt1即随机梯度 g~(st,at;θnow ) utθlnπ(atst;θnow )

3. 算法关键代码

class REINFORCE:
    def __init__(self, state_dim, hidden_dim, action_dim, learning_rate, gamma, device):
        self.policy_net = PolicyNet(state_dim, hidden_dim,action_dim).to(device)
        self.optimizer = torch.optim.Adam(self.policy_net.parameters(),lr=learning_rate)  # 使用Adam优化器
        self.gamma = gamma  # 折扣因子
        self.device = device
 
    def take_action(self, state):  # 根据动作概率分布随机采样
        state = torch.tensor([state], dtype=torch.float).to(self.device)
        probs = self.policy_net(state)
        action_dist = torch.distributions.Categorical(probs)
        action = action_dist.sample()
        return action.item()
 
    def update(self, transition_dict):
        reward_list = transition_dict['rewards']
        state_list = transition_dict['states']
        action_list = transition_dict['actions']
 
        G = 0
        self.optimizer.zero_grad()
        for i in reversed(range(len(reward_list))):  # 从最后一步算起,越靠后需要乘的gamma次数越高
            reward = reward_list[i]
            state = torch.tensor([state_list[i]],dtype=torch.float).to(self.device)
            action = torch.tensor([action_list[i]]).view(-1, 1).to(self.device)
            log_prob = torch.log(self.policy_net(state).gather(1, action))  # ln(π(at|st;θ))
            G = self.gamma * G + reward
            loss = -log_prob * G  # 每一步的损失函数,随机梯度g(at|st;θ)
            loss.backward()  # 反向传播计算梯度
        self.optimizer.step()  # 计算完所有的随机梯度与ut乘积和后,梯度下降(前面加负号了)

4. 算法特点

同策略(on-policy)算法,目标策略与行为策略相同,不能够使用经验回放。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值