控制理论中的几种稳定性

本文详细介绍了李雅普诺夫稳定性、渐进稳定性和指数稳定性三种系统稳定性概念。通过李雅普诺夫第二方法,阐述了判断系统稳定性的解法,并通过特征值和图形直观解释了各种稳定性的特点。此外,还强调了渐进稳定性和指数稳定性的区别在于状态轨迹收敛速度的不同。
摘要由CSDN通过智能技术生成

1、李雅普诺夫稳定性 (Lyapunov Stable)

1.1 概念

是一种局部稳定性
这一部分是DR_CAN 【Advanced控制理论】6_稳定性_李雅普诺夫_Lyapunov学习笔记
李雅普诺夫稳定性定义:对于 ∀ t 0 > 0 , \forall t_0>0, t0>0, ∀ ϵ > 0 , \forall\epsilon>0, ϵ>0,  ∃ δ ( t 0 , ϵ ) \exists\delta(t_0,\epsilon) δ(t0,ϵ), 满足 ∥ x ( t 0 ) ∥ < δ ( t 0 , ϵ ) \lVert x(t_0)\rVert<\delta(t_0,\epsilon) x(t0)∥<δ(t0,ϵ), 若对于 ∀ t > t 0 \forall t>t_0 t>t0, 都存在 ∥ x ( t ) ∥ < ϵ \lVert x(t)\rVert<\epsilon x(t)∥<ϵ, 则系统李雅普诺夫稳定。
汉译汉:如果平衡状态 x e x_e xe受到扰动后, t 0 t_0 t0时刻系统动态方程的解在 x e x_e xe δ \delta δ邻域内,对 t 0 t_0 t0时刻之后的时间,系统动态方程的解在 x e x_e xe ϵ \epsilon ϵ邻域内,我们就称 x e x_e xe在李雅普诺夫意义下是稳定的。
特征值:所有特征值实部非正。
DR_CAN的讲解中,用下图直观地说明了它的性质。
DR_CAN视频截图

1.2 解法

常用的是李雅普诺夫第二方法,即直接方法。
对于一个系统 x ˙ = f ( x ) \dot x=f(x) x˙=f(x), 其稳定点为 x e = 0 x_e=0 xe=0 。若存在 V ( x ) V(x) V(x),满足
( 1 ) V ( 0 ) = 0 ( 2 ) V ( x ) ≥ 0 , V ( x )   P S D   i n   D − { 0 } ( 3 ) V ˙ ( x ) ≤ 0 , V ˙ ( x )   N S D   i n   D − { 0 } (1) V(0)=0\\ (2) V(x)≥0,V(x)\ PSD \ in \ D-\{0\}\\ (3) \dot V(x)≤0,\dot V(x)\ NSD\ in \ D-\{0\} (1)V(0)=0(2)V(x)0V(x) PSD in D{0}(3)V˙(x)0V˙(x) NSD in D{0}
则系统李雅普诺夫稳定。
PSD:Positive Semi Definite 半正定
NSD:Negative Semi Definite 半负定

2、渐进稳定性 (Asympototically Stable)

2.1 概念

渐进稳定性定义:对 ∃ δ ( t 0 ) > 0 \exists\delta(t_0)>0 δ(t0)>0, 当 x ( t 0 ) x(t_0) x(t0)满足 ∥ x ( t 0 ) ∥ < δ ( t 0 ) \lVert x(t_0)\rVert<\delta(t_0) x(t0)∥<δ(t0)时,有 lim ⁡ t → ∞ \lim\limits_{t\to \infty} tlim ∥ x ( t ) ∥ = 0 \lVert x(t)\rVert=0 x(t)∥=0,系统渐进稳定。
特征值:所有特征值实部为负。
DR_CAN的讲解中,用下图红色线直观地说明了它的性质。
DR_CAN视频截图

2.2 解法

对于一个系统 x ˙ = f ( x ) \dot x=f(x) x˙=f(x), 其稳定点为 x e = 0 x_e=0 xe=0 。若存在 V ( x ) V(x) V(x),满足
( 1 ) V ( 0 ) = 0 ( 2 ) V ( x ) > 0 , V ( x )   P D   i n   D − { 0 } ( 3 ) V ˙ ( x ) < 0 , V ˙ ( x )   N D   i n   D − { 0 } (1) V(0)=0\\ (2) V(x)>0,V(x)\ PD \ in \ D-\{0\}\\ (3) \dot V(x)<0,\dot V(x)\ ND\ in \ D-\{0\} (1)V(0)=0(2)V(x)>0V(x) PD in D{0}(3)V˙(x)<0V˙(x) ND in D{0}
则系统渐进稳定。
难点是找 V ( x ) V(x) V(x)

3、指数稳定性 (Exponentially Stable)

指数稳定:如果系统平衡状态 x e x_e xe是渐近稳定的,且状态轨迹收敛到平衡点的速度大于等于某个关于 t t t的指数函数,则称平衡状态 x e x_e xe是指数稳定的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值