城市街道为路面跑步提供了环境。本次给大家带来一篇SCI论文的全文翻译!该论文提出了一种非参数方法,使用机器学习模型来预测路面跑步强度。该论文提供了关于路面跑步的实证证据,并突出了规划者、景观设计师和城市管理者在设计适于跑步的城市街道时应考虑的关键因素。
【论文题目】
Analyze the usage of urban greenways through social media images and computer vision
【题目翻译
通过社交媒体图片和计算机视觉分析城市绿道的使用情况
【期刊信息】
Environment and Planning B Urban Analytics and City Science · January 2022
【作者信息】
Yang Song,得克萨斯农工大学景观建筑与城市规划系
Huan Ning,南卡罗来纳大学地理系
Xinyue Ye(通讯作者),得克萨斯农工大学景观建筑与城市规划系xinyue.ye@tamu.edu
Divya Chandana and Shaohua Wang,新泽西理工学院信息系。
【论文链接】
https://doi.org/10.1177/23998083211064624
【关键词】
城市绿道、公园使用、计算机视觉、社交媒体、场所质量。
【摘要】
城市街道为路面跑步提供了环境。该研究提出了一种非参数方法,使用机器学习模型来预测路面跑步强度。这些模型是利用来自Keep这一移动运动应用的路线签到数据,以及北京核心区的街道地理信息数据开发的。结果显示,蓝色空间和路径连续性是提高路面跑步强度的最重要因素。天空开放度和街道封闭性有一个最佳设计值,需要在满足道路光照的同时与遮荫达到平衡。同时,提供适当的视觉透视性也很重要。此外,与日常活动不同的是,功能混合和功能密度较高并未对路面跑步强度产生显著的正面影响。本研究提供了关于路面跑步的实证证据,并突出了规划者、景观设计师和城市管理者在设计适于跑步的城市街道时应考虑的关键因素。
【摘要】
城市绿道是一种新兴的城市景观形式,为公共健康、经济和生态环境提供多方面的效益。然而,绿道的使用情况和用户体验往往很难衡量,因为调查这么大的区域成本很高。本文基于2017年Instagram上的帖子,采用计算机视觉(CV)技术来分析和比较普通大众如何使用两个典型的绿道公园,即纽约市的高线公园和亚特兰大的亚特兰大环线。通过人脸和物体检测分析来推断用户构成、活动和关键体验。我们展示了Instagram帖子的时间分布模式,以及从照片中检测出的群体聚会、微笑表情和代表性物体。我们的结果显示,两个公园的用户参与程度都很高,但青少年的参与明显较少。高线公园有更多的集体活动,并且在工作日比亚特兰大环线更为活跃。亚特兰大环线呈现出更强烈的逃离感和更多的体育活动。总之,结合人工智能技术后,社交媒体图片如Instagram可以为城市绿道的使用提供有力的经验性证据,这将有利于未来的景观建筑和城市设计实践。
【前言】
绿道是城市中的线性公园,通常在闲置土地、铁路线路、输电线路或水体