进化神经结构搜索综述

本文概述了神经结构搜索(NAS)的重要性和挑战,特别是进化算法在自动设计深度神经网络中的应用。进化算法如遗传算法、群体智能(如粒子群优化和蚁群算法)和其他方法在优化搜索空间、编码策略和群体更新中发挥关键作用。当前的ENAS方法虽然已取得进展,但仍面临有效性和可扩展性问题,以及计算资源的高效利用和模型解释性等挑战。
摘要由CSDN通过智能技术生成

深度神经网络作为深度学习的基石,已在许多实际应用中获得成功,如图像分类,自然语言处理,语音识别等。网络可以直接从数据中提取特征,没有了原来复杂耗时的特征工程 。通常网络的性能取决于两方面:网络结构与权重。一方面,网络的权重可以学习得到。通过构建连续的损失函数,使用梯度算法最小化损失函数,当满足终止条件时,得到最优的权重。另一方面,对于获得最优结构,无法直接使用连续公式表示,并且也没有明确的函数衡量寻找最优结构的过程。目前表现最好的模型基本为人工设计的网络,这些网络模型需要拥有丰富的神经网络和图像处理知识的研究人员设计。实际上,大多数用户不满足这样的条件,神经结构搜索(neural architecture search,NAS)旨在自动化设计深度神经网络。数学上,NAS可以表示成由公式(1)表示的优化问题:

其中 表示神经网络结构的搜索空间, 在训练集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Linux基金会AI&Data基金会

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值