最大子数组问题

本文介绍了最大子数组问题,详细讨论了算法导论中的暴力法、分治策略和动态规划法的实现,从O(n^3)到O(nlogn),并提供了伪代码实现。通过实践代码来加深理解,包括动态规划的解决方案。
摘要由CSDN通过智能技术生成

简介

最大子数组问题我就不赘述了,网上一搜就有。
在算法导论第四章,分治策略,对最大子问题这个经典的编程题目进行了十分详细生动的描绘,类比股票的正负波动,深入浅出,读起来十分有趣。并且不断优化方法,从一开始的暴力法,到左中右分治法,将复杂度从O(n3)逐渐降低到O(nlogn) ps:甚至还可以用动态规划法将复杂度降为O(n)。思考过程十分精彩,伪代码也比较好懂。光看不练空把式,所以决定将其伪代码实现一遍,也加入了一种动态规划的解法,加深自己的印象也锻炼编码能力!

代码实现:

暴力法O(n3):

三重循环穷举出所有的子数组组合即可

void max_subsum_n3(int a[],int size)
{
    int i ,j,k,max=0,sum=0;
    for(i=0;i<size;i++)
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值