DSADC、量化噪声、噪声整形

注:本文内容来自ChatGPT

Q:DSADC中,为什么过采样可以提高信噪比?

A:在ΔΣ调制器(Delta-Sigma ADC,简称DSADC)中,过采样技术是一种提高信噪比(SNR,Signal-to-Noise Ratio)的重要方法。这是因为过采样可以有效地将量化噪声分散到更宽的频带,从而在信号带宽内显著降低噪声密度。

过采样与信噪比的关系:

  1. 量化噪声的频谱分布:在传统的模数转换中,量化噪声通常被假设为均匀分布在从直流到奈奎斯特频率(即采样率的一半)的频谱范围内。而在ΔΣ调制器中,量化噪声被噪声整形(Noise Shaping)至较高频率,使得低频范围内(即信号带宽范围内)的噪声大幅减少。

  2. 过采样的作用:过采样是指以高于奈奎斯特频率的速率对信号进行采样。假设采样率增加了M倍,则量化噪声的能量将被分散到更宽的频谱范围内。在这种情况下,虽然总的量化噪声功率保持不变,但因为信号带宽内的噪声密度下降,实际信号带宽内的噪声功率减少。

  3. 信噪比的提升:对于ΔΣ调制器,每增加一倍的过采样率,信噪比理论上可以提高约3dB(对于一阶ΔΣ调制器)。这是因为每增加一倍的过采样率,信号带宽内的噪声功率减少到原来的1/2,而这对应的信噪比则提高了3dB。对于更高阶的ΔΣ调制器,这个提升幅度可能更大。

总结:过采样通过增加采样率来将量化噪声分散到更宽的频带,从而降低信号带宽内的噪声密度,这直接导致了信噪比的提高。因此,过采样和噪声整形是ΔΣ调制器中实现高信噪比的关键技术手段之一。

Q:为什么提高采样率的时候,量化噪声会被分散到更宽的频谱范围内?

A:提高采样率时,量化噪声被分散到更宽的频谱范围内,这一现象可以通过采样理论和噪声的频谱分布来解释。以下是详细的解释:

1. 量化噪声的本质

量化噪声是在模数转换过程中由于有限的分辨率(即有限的比特数)产生的噪声。通常,这种噪声被视为白噪声,其功率在整个频谱上均匀分布。

2. 采样率与频谱范围的关系

根据采样定理,当我们以采样率 fs 对信号进行采样时,采样后的信号频谱将被复制到 fs​ 的倍频处。因此,采样频率决定了信号和噪声频谱的范围,最高频率(也称为奈奎斯特频率)为 fs/2。

3. 提高采样率的效果

当我们提高采样率时:

  • 频谱扩展:采样率提高意味着奈奎斯特频率(fs​/2)提高。例如,采样率从 fs​ 提高到 M×fs​ 时,奈奎斯特频率从 fs/2 提高到 M×fs/2。

  • 噪声的频谱分布:虽然量化噪声的总功率保持不变,但它现在分布在更宽的频谱范围内,即从原来的 [0,fs/2] 范围扩展到 [0,M×fs/2] 范围。由于噪声能量在更宽的频带上分散开来,单位频率&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值