ADC的量化噪声和信噪比,过采样

本文探讨了ADC(模数转换器)中的量化噪声和信噪比概念。量化噪声是模拟信号转换为数字信号过程中不可避免的误差,其总能量不变但可通过提高采样速度来降低幅值。信噪比(SNR)可以通过增加ADC采样位数或采用过采样技术来提升。过采样能够将噪声分散到更宽的频谱范围内,从而降低噪声的平均幅值,提高信噪比。总结来说,优化ADC采样策略对于提高信号质量至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单记录几个ADC的东西

  1. 量化噪声
    下图中,蓝色斜线是连续的模拟信号,阶梯状波形是经过ADC转换后的离散信号。如果我们把这个两个相减,会得到右边那个像锯齿波一样的量化误差

在这里插入图片描述
量化噪声(Quantization Noise),这里Q值代表量化,如果采样越快,两个Q之间的距离越小,Q的幅值越低,也就是量化噪声的幅值越低。虽然Q值幅值变低,但是它包围的面积不变。因此,改变采样速度,可以改变量化噪声的幅值,但不能改变量化噪声的总能量。
在这里插入图片描述
从时域里看,对于一个模拟的Sine波形,经过ADC转换数字化后,我们会得到锯齿状的Sine波形。我们加快采样速度,可以把锯齿变得很细,但是依旧存在,并且量化噪声的总能量不变
2. 信噪比
如果我们把上面的Sine波形放到频域里看。我们希望信号频率的幅值尽量大,而噪声幅值尽量小
在这里插入图片描述在这里插入图片描述
上图的噪声主要来源于量化噪声,通过信噪比计算,我们会得到一个固定的公式:

信噪比SNR(dB) = 6.02N + 1.76(噪声仅考虑量化噪声)

  • SNR:指的是量化噪声信噪比(Signal noise ratio)
  • N:指的是ADC采样位数。如果我们把N提高,信噪比提高,即信号更大,噪声更小。采样质量变好,因此,提高ADC采样位数,可以提高采样质量。
    一般来说,提高采样位数,往往意味着ADC的成本可能也会更高。
    有没有不提高位数,同样优化信噪比的方法呢?答案是“有的”,那就是过采样
  1. 过采样提高信噪比
    我们把图3进一步简化。下图红色箭头表示主信号的幅值,灰色代表噪声幅值,平均分布在DC到fs/2之间。(fs为采样频率)
    在这里插入图片描述
    如上图,如果我们将采样率提高K倍,噪声能量不变,并且平均分布在更宽范围,从而噪声的幅值降低。原始信号没变,但是噪声幅值减少,也就是信噪比提高了。提高采样率之后的信噪比公式:
    SNR=6.02N+1.76dB+10log(OSR)
    其中,过采样速率OSR = Fs/(2 ᵡ BW), BW为带宽。(注意:此公式仅适用于只存在量化噪声的理想ADC)
    因此,提高采样率有助于提高信噪比。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值