Sigma-Delta(Σ-Δ)模数转换器(ADC)是一种基于过采样和噪声整形技术的高精度转换器,广泛应用于音频、传感器信号采集等需要高分辨率的场景。其核心原理如下:
1. 过采样(Oversampling)
-
基本概念:以远高于奈奎斯特频率(输入信号最高频率的2倍)的采样率对模拟信号进行采样。例如,若目标带宽为20 kHz,传统ADC可能以40 kHz采样,而Σ-Δ ADC可能以数MHz的频率采样。
-
作用:
-
量化噪声功率被分散到更宽的频带中,从而降低基带(目标频段)内的噪声密度。
-
为后续的噪声整形和数字滤波提供基础。
-
2. Sigma-Delta调制器(核心组件)
调制器是Σ-Δ ADC的核心,通常由积分器、比较器(1位ADC)和反馈DAC构成闭环系统,实现噪声整形。
工作流程:
-
输入信号与反馈信号的差值:输入模拟信号与DAC反馈的模拟信号相减,得到差值。
-
积分(Σ阶段):差值信号通过积分器累积,生成积分后的信号。
-
量化(Δ阶段):积分结果由1位比较器(量化器)转换为高速数字脉冲流(如0或1)。
-
反馈:量化后的数字信号通过1位DAC转换为模拟信号,反馈回输入端,形成闭环控制。
噪声整形原理:
-
积分器对低频信号增益高,对高频信号增益低。
-
量化噪声(主要分布在基带外的高频区域)被反馈环路“推”向高频,而基带内的噪声显著降低。
-
数学上,噪声传递函数(NTF)具有高通特性,信号传递函数(STF)具有低通特性。
3. 数字滤波与降采样
-
数字低通滤波器:滤除高频噪声(被整形到高频的量化噪声),仅保留基带内的信号。
-
降采样(Decimation):将过采样后的数据流降低到奈奎斯特速率,去除冗余数据,输出最终的高分辨率数字信号(如16位、24位)。
关键优势
-
高分辨率:通过噪声整形和过采样,基带内信噪比(SNR)显著提升。
-
抗混叠能力强:过采样自然抑制高频干扰,降低对抗混叠滤波器的要求。
-
低硬件复杂度:1位量化器无需精密匹配元件,适合CMOS工艺集成。
典型结构示例
模拟输入 → Σ(积分器) → Δ(1位量化器) → 数字输出 ↑反馈环路(1位DAC)↓
应用场景
-
音频领域:24位高保真音频ADC。
-
传感器信号采集:温度、压力传感器等低频高精度测量。
-
医疗设备:ECG、生物电信号采集。
总结
Sigma-Delta ADC通过过采样扩展噪声分布,利用噪声整形将噪声移至高频,再通过数字滤波提取高精度信号。其牺牲速度换取精度的特点,使其成为低频高分辨率应用的理想选择。