优化模型 _ 集成算法

在机器学习中,可以将多种机器学习算法组合在一起,使计算出来的结果更好,这就是集成算法的思想。集成算法是提高算法准确度的有效方法之一。

1 集成的方法

三种流行的集成算法:

  • 装袋算法:先将训练集分离成多个子集,然后通过各个子集训练多个模型;
  • 提升算法:训练多个模型并组成一个序列,序列中的每一个模型都会修正前一个模型的错误;
  • 投票算分:训练多个模型,并采用样本统计来提高模型的准确度。

2 装袋算法

装袋算法是一种提高分类准确率的算法,通过给定组合投票的方式获得最优解。例如,生病之后,去n个医院看了n个医生,每个医生都开了药方,最后哪个药方的出现次数多,说明这个药方越有可能是最优解。这就是装袋算法的思想。下面将介绍三种装袋模型:

  • 装袋决策树(Bagged Decision Trees)
  • 随机森林(Random Forest)
  • 极端随机树(Extra Trees)

2.1 装袋决策树

装袋算在数据具有很大的方差时非常有效,最常见的例子就是决策树的装袋算法。

from pandas import read_csv
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

# 导入数据
filename = 'pima_Data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
# 将数据分为输入数据和输出结果
array = data.values
X = array[:, 0:8]
Y = array[:, 8]
num_folds = 10
seed = 7
kfold = KFold(n_splits=num_folds, shuffle=True, random_state=seed)
cart = DecisionTreeClassifier()
num_tree = 100
model = BaggingClassifier(base_estimator=cart, n_estimators=num_tree, random_state=seed)
result = cross_val_score(model, X, Y, cv=kfold)
print(result.mean())

2.2 随机森林

随机森林是用随机的方式建立一个森林,森林由很多的决策树组成,而且每一颗决策树之间是没有关联的。得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一颗决策树分别进行判断,看看这个样本应该属于哪一类,再看看哪一类被选择最多,就预测这个样本为哪一类。

在建立每一颗决策树的过程中,有两点需要注意:采样与完全分裂。首先是两个随机采样的过程,随机森林对输入的数据要进行行、列的采样。对于行采样采用有放回的方式,也就是在采样得到的样本集合中可能有重复的样本。假设输入样本也是N个,那么采样的样本也是N个。这样在训练的时候,每一颗树的输入样本都不是全部的样本,就相对不容易出现过拟合。然后进行列采样,从M个feature中选出m个(m<<M)。之后再对采样之后的数据使用完全分裂的方式建立决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么所有的样本都是指向同一个分类。一般很多的决策树算法都有一个重要的步骤——剪枝,但这里不要这么做,因为之前的两个随机采样过程保证了随机性,所以不剪枝也不会出现过拟合。

from pandas import read_csv
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier

# 导入数据
filename = 'pima_data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
# 将数据分为输入数据和输出结果
array = data.values
X = array[:, 0:8]
Y = array[:, 8]
num_folds = 10
seed = 7
kfold = KFold(n_splits=num_folds, shuffle=True, random_state=seed)
num_tree = 100
max_features = 3
model = RandomForestClassifier(n_estimators=num_tree, random_state=seed, max_features=max_features)
result = cross_val_score(model, X, Y, cv=kfold)
print(result.mean())

2.3 极端随机树

极端随机树是由PierreGeurts等人于2006年提出的,它与随机森林十分相似,都是由许多决策树构成。但它与随机森林有两个主要区别:

  • 随机森林应用的是Bagging模型,而极端随机树是使用所有的训练样本得到每颗决策树,也就是每颗决策树应用的是相同的全部训练样本;
  • 随机森林是在一个随机子集内得到最优分叉特征属性,而极端随机树是完全随机地选择分叉特征属性,从而实现对决策树进行分叉的。
from pandas import read_csv
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import ExtraTreesClassifier

# 导入数据
filename = 'pima_data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
# 将数据分为输入数据和输出结果
array = data.values
X = array[:, 0:8]
Y = array[:, 8]
num_folds = 10
seed = 7
kfold = KFold(n_splits=num_folds, shuffle=True, random_state=seed)
num_tree = 100
max_features = 7
model = ExtraTreesClassifier(n_estimators=num_tree, random_state=seed, max_features=max_features)
result = cross_val_score(model, X, Y, cv=kfold)
print(result.mean())

3 提升算法

提升算法是一种用来提高弱分类算法准确度的方法,这种方法先构造一个预测函数系列,然后以一定的方式将它们组合成一个预测函数。提升算法也是一种提高任意给定学习算法准确度的方法,它是一种集成算法,主要通过对样本集的操作获得样本子集,然后用弱分类算法在样本子集上训练生成一系列基分类器。它可以用来提高其他若分类算法的识别率,也就是将其他弱分类算法作为基分类算法放入提升框架中,通过提升框架对训练样本集的操作,得到不同的训练样本子集,再用该样本子集训练生成基分类器。每得到一个样本集就用该基分类算法在该样本集上产生一个基分类器,这样在给定训练轮数n后,就可以产生n个基分类器,然后提升算法将这n个基分类器进行加权融合,产生最后的结果分类器。在这n个基分类器中,每个分类器的识别率不一定很高,但他们联合后的结果有很高的的识别率,这样便提高了弱分类算法的识别率。

3.1 AdaBoost

AbaBoost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。它将修改过权值的新数据集送给下层分类器进行训练,再将每次训练得到的分类器融合起来,作为最后的决策分类器。使用AdaBoost分类器可以排除一些不必要的训练数据特征,并放在关键的训练数据上面。

from pandas import read_csv
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import AdaBoostClassifier

# 导入数据
filename = 'pima_data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
# 将数据分为输入数据和输出结果
array = data.values
X = array[:, 0:8]
Y = array[:, 8]
num_folds = 10
seed = 7
kfold = KFold(n_splits=num_folds, shuffle=True, random_state=seed)
num_tree = 30
model = AdaBoostClassifier(n_estimators=num_tree, random_state=seed)
result = cross_val_score(model, X, Y, cv=kfold)
print(result.mean())

3.2 随机梯度提升

随机梯度提升法(GBM)基于的思想是:要找到某个函数的最大值,最好的办法是沿着该函数的梯度方向探寻。梯度算子总是指向函数值增长最快的方向。由于梯度提升算法在每次更新数据集时,都需要提高整个数据集,计算复杂度较高,于是有了一个改进算法——随机梯度提升算法,该算法一次只用一个样本点来更新回归系数,极大地改善了算法的设计复杂度。

from pandas import read_csv
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import GradientBoostingClassifier

# 导入数据
filename = 'pima_data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
# 将数据分为输入数据和输出结果
array = data.values
X = array[:, 0:8]
Y = array[:, 8]
num_folds = 10
seed = 7
kfold = KFold(n_splits=num_folds, shuffle=True, random_state=seed)
num_tree = 100
model = GradientBoostingClassifier(n_estimators=num_tree, random_state=seed)
result = cross_val_score(model, X, Y, cv=kfold)
print(result.mean())

4 投票算法

投票算法是一个非常简单的多个机器学习算法的集成算法。投票算分是通过创建两个或多个算法模型,利用投票算法将这些算法包装起来,计算各个子模型的平均预测状况。在实际的应用中,可以对每个子模型的预测结果增加权重,以提高算法的准确度。

from pandas import read_csv
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression

# 导入数据
filename = 'pima_data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
# 将数据分为输入数据和输出结果
array = data.values
X = array[:, 0:8]
Y = array[:, 8]
num_folds = 10
seed = 7
kfold = KFold(n_splits=num_folds, shuffle=True, random_state=seed)
cart = DecisionTreeClassifier()
models = []
model_logistic = LogisticRegression()
models.append(('logistic', model_logistic))
model_cart = DecisionTreeClassifier()
models.append(('cart', model_cart))
model_svc = SVC()
models.append(('svm', model_svc))
ensemble_model = VotingClassifier(estimators=models)
result = cross_val_score(ensemble_model, X, Y, cv=kfold)
print(result.mean())

参考资料

[1] 魏贞原.2018.机器学习:Python实践[M].北京:电子工业出版社

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值