1. 背景
评论是 B站生态的重要组成部分,涵盖了 UP 主与用户的互动、平台内容的推荐与优化、社区文化建设以及用户情感满足。B站的评论区不仅是用户互动的核心场所,也是平台运营和用户粘性的关键因素之一,尤其是在与弹幕结合的情况下,成为平台的标志性特色。
在社会热点事件发生时,评论区的读写流量会急剧增加,直接影响业务运行,对用户体验、内容创作和社区文化等多个方面产生负面影响,所以评论服务的稳定性至关重要。
评论系统对缓存命中率要求非常高,一旦发生缓存失效,大量请求会直接访问 TiDB,如果 TiDB 出现问题,将导致评论服务不可用。所以评论需要构建一套可靠的容灾系统,并具备自动降级能力,以提升评论服务的整体稳定性。


2. 架构设计
评论系统架构主要依赖 Redis 缓存和 TiDB 存储,列表接口中依赖多种排序索引,如点赞序、时间序、热度序等,这些索引通过 Redis 的 Sorted Set 数据结构进行存储。
在大评论区中查询这些排序索引,当 Redis 缓存 miss 时需要回源 TiDB 查询,因数据量过大、查询耗时较长,慢查询会占用大量 CPU 和内存,进而导致其他查询的延迟或阻塞,严重影响整个 TiDB 的吞吐量和性能。例如查询点赞序排序索引:
SELECT id FROM reply WHERE ... ORDER BY like_count DESC LIMIT m,n
为了避免 TiDB 故障导致评论服务不可用,我们希望建立一套新的存储系统,解决 TiDB 单点故障问题。该系统不仅为业务提供容灾能力和自动降级通道,还能在大流量查询场景下提供更优的查询性能,从而提升整体评论服务的稳定性。
基于 B站自研的泰山 KV 存储(Taishan),我们搭建了「多级存储架构」,整体设计方案的核心思路包括:
-
将排序索引的存储从「结构化」转为「非结构化」
-
将排序索引查询从「SQL」转换为性能更高的「NoSQL」
-
通过「写场景的复杂度」来换取「更优的读场景性能」

3. 存储设计
存储模型
在评论的业务场景中,我们抽象了两种数据模型:排序索引(Index)、评论物料(KV)

最低0.47元/天 解锁文章
2175

被折叠的 条评论
为什么被折叠?



