平衡二叉树(AVL)

平衡二叉树(AVL)

上一篇讲了 二叉搜索树

二叉搜索树的 查询、插入、删除 时间复杂度都为 O(logN)
这是一个理想状态
在非理想状态下,二叉搜索树的时间复杂度将会降低为 O(N),数组级别
假如我一组数据顺序为:1、2、3、4、5、6
然后按顺序将数据插入到 二叉搜索树,将构建成如下线性结构二叉树
那么此时 查询、插入、删除 时间复杂度将会降低为 O(N)
那么二叉搜索树的优势将消失
在这里插入图片描述
那么如何解决如上问题呢
我们需要引入平衡二叉树(AVLTree)
平衡二叉树的本质也是一颗二叉搜索树,不过对树做了限制
平衡二叉树限制如下
1:平衡二叉树本身是一个二叉搜索树
2:平衡二叉树中所有节点的左右子树的高度差 小于等于1(称之为平衡因子)

如上图中节点 1 的左子树高度为 0,右子树高度为 6
大于平衡因子 1 的限制,所以它不是一颗平衡二叉树

将上面数据按顺序插入到平衡二叉树看结果
在这里插入图片描述

平衡二叉树导致不平衡的两个操作:插入、删除
平衡二叉树失衡有如下四种情况

LL 型:也称作左左型,在破坏节点的左边的左边插入而导致失衡
如何判断属于什么型:从被破坏的节点开始数两个,下图中红色路径就是判断路径
在这里插入图片描述

LR 型:也称 左右型,在破坏节点的左边的右边插入而导致失衡
在这里插入图片描述

RL 型:也称右左型,在破坏节点的右边的左边插入而导致失衡
在这里插入图片描述

RR 型:也称右右型,在破坏节点的右边的右边插入而导致失衡
在这里插入图片描述

当失去平衡时,需要确定是那种类型导致的,然后做相应的旋转操作,将树恢复到平衡状态

C#实现代码如下

    /// <summary>
    /// 平衡二叉搜索树
    /// </summary>
    /// <typeparam name="T"></typeparam>
    class AVLTree<T> : BSTree<T> where T : IComparable<T>
    {
        /// <summary>
        /// 插入
        /// </summary>
        public override BinNode<T> Insert(T t)
        {
            BinNode<T> node = Search(t);
            if (null != node)
            {
                return node;
            }

            //按照二叉搜索树的方式将值插入
            node = Insert(t, _hot);

            // 一:从 BinNode<T> g = _hot节点(新插入节点的父节点)开始,
            // 二:如果节点 g 不平衡则旋转 g,使 g 平衡,到此结束
            // 三:令  g = g.ParentNode 跳转到 二 继续执行
            // 因为插入新节点只会导致一个节点失衡,所以一旦找到一个
            // 不平衡的节点,使之平衡后则树恢复平衡,结束退出
            for (BinNode<T> g = _hot; null != g; g = g.ParentNode)
            {
                if (!AvlBalanced(g))
                {
                    if (g.IsRoot())
                    {
                        Root = RotateAt(TallerChild(TallerChild(g)));
                    }
                    else if (g.IsLChild())
                    {
                        g.ParentNode.LeftChild = RotateAt(TallerChild(TallerChild(g)));
                        UpdateHeightAbove(g.ParentNode.LeftChild);
                    }
                    else
                    {
                        g.ParentNode.RightChild = RotateAt(TallerChild(TallerChild(g)));
                        UpdateHeightAbove(g.ParentNode.RightChild);
                    }

                    break;
                }
                else
                {
                    UpdateHeight(g);
                }
            }

            return node;
        }

        /// <summary>
        /// 删除
        /// </summary>
        public override bool Remove(T t)
        {
            BinNode<T> node = Search(t);
            if (null == node)
            {
                return false;
            }

            // 按照二叉搜索树删除节点
            Remove(node, ref _hot);

            // 一:从 BinNode<T> g = _hot节点(新插入节点的父节点)开始,
            // 二:如果节点 g 不平衡则旋转 g,使节点 g 平衡。
            // 三:令 g = g.ParentNode,跳转到 二 继续执行
            // 删除节点后失衡比较复杂,因为删除一个节点后可能会导致一
            // 个节点失衡,旋转使其平衡后可能会导致其父节点再次失衡,
            // 最坏情况会导致每次调整后其父节点会再次的失衡,直到跟节
            BinNode<T> g = _hot;
            while(null != g)  //从_hot出发向上,逐层检查各代祖先g
            { 
                if (!AvlBalanced(g)) //一旦发现g失衡,则(采用“3 + 4”算法)使之复衡,并将该子树联至
                {
                    if (g.IsRoot())
                    {
                        Root = RotateAt(TallerChild(TallerChild(g)));  //原父亲
                        g = Root;
                    }
                    else if (g.IsLChild())
                    {
                        g.ParentNode.LeftChild = RotateAt(TallerChild(TallerChild(g)));  //原父亲
                        g = g.ParentNode.LeftChild;
                    }
                    else
                    {
                        g.ParentNode.RightChild = RotateAt(TallerChild(TallerChild(g)));  //原父亲
                        g = g.ParentNode.RightChild;
                    }
                }
                else
                {
                    UpdateHeight(g);
                }

                g = g.ParentNode;
            }

            return true;
        }

        /// <summary>
        /// 理想平衡
        /// </summary>
        public bool Balanced(BinNode<T> node)
        {
            return NodeHeight(node.LeftChild) == NodeHeight(node.RightChild);
        }

        /// <summary>
        /// 平衡因子
        /// </summary>
        public int BalancedFactor(BinNode<T> node)
        {
            return NodeHeight(node.LeftChild) - NodeHeight(node.RightChild);
        }

        /// <summary>
        /// AVL 平衡条件
        /// </summary>
        public bool AvlBalanced(BinNode<T> node)
        {
            return -1 <= BalancedFactor(node) && BalancedFactor(node) <= 1; 
        }

        // 在 左、右 孩子中取更高者
        protected BinNode<T> TallerChild(BinNode<T> node)
        {
            int balFac = BalancedFactor(node);
            if (balFac > 0) // 左高
            {
                return node.LeftChild;
            }
            else if (balFac < 0) // 右高
            {
                return node.RightChild;
            }
            else // 等高:与父亲x同侧者
            {
                return node.IsLChild() ? node.LeftChild : node.RightChild;
            }
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值