twsvm的3个优点:
1.由一个大的二次规划问题拆成两个小的二次规划问题,训练速度大约提升了四倍。
2.利用二次损失函数,TWSVM充分考虑了类中的先验信息,对噪声不太敏感。
3.TWSVM对于二维数据的预测非常有用。
1.在TWSVM的原始问题中,只有经验风险被最小化,不像标准SVM中,同时最小化结构风险和经验风险。
2.为了避免奇异矩阵的问题,引入了一个小的误差,无法获得最优解,只能获得近似解。
3.虽然TWSVM解决了两个较小的QP,但在训练模型之前,需要计算逆矩阵。 因此,TWSVM的计算复杂度应该包括两部分:逆矩阵的计算复杂度和对偶问题的求解复杂度。 对于一个大数据集,计算将很难成功,因为在实践中,用经典的方法计算逆矩阵是难以解决的,甚至是不可能的。
4.针对非线性情况,原始问题不是像传统SVM那样由线性条件扩展而来,而是直接构造的。
5.TWSVM需要快速求解器,如标准支持向量机的SMO算法。
6.通过对每个类使用二次损失函数使近端超平面足够接近类本身,TWSVM失去稀疏性,这导致该类中几乎所有的点都有助于每个最终决策函数。
TWSVM存在的问题
最新推荐文章于 2024-05-03 12:56:28 发布