LS-TWSVM

目录

1. 最优化问题

2. 求解

3. 算法流程


        在 TWSVM 中,利用拉格朗日乘子构建一个对偶问题并进行求解,但时间开销仍然比较大,对此有人提出了用最小二乘法来求解原始问题,求解之前需要对原始问题做一定的变换,将不等式约束变成等式约束。

1. 最优化问题

LS-TWSVM 的最优化问题定义如下,以其中一个超平面为例子:

\left\{\begin{matrix} \min & \frac{1}{2}(Aw_1+e_1b_1)^T(Aw_1+e_1b_1)+\frac{1}{2}q^Tq\\ s.t.& -(Bw_1+e_2b_1)+q=e_2 \end{matrix}\right.

该公式的最小化项的首项是正样本点到超平面的距离平方和,等式约束的目的是所有的负样本点到该超平面的距离在 1 附近,最小化公式的第二项就是这个误差的平方和。

2. 求解

        首先将约束公式代入到最小化公式中得到:

\min_{w_1,b_1}\; \frac{1}{2}\left \| Aw_1+e_1b_1 \right \|_2^2+\frac{c_1}{2}\left \| Bw_1+e_2b_1+e_2 \right \|_2^2

求其对 w_1,b_1 的偏导并令偏导等于 0 可以得到如下两个式子,求解过程类似 TWSVM:

A^T(Aw_1+e_1b_1)+C_1B^T(Bw_1+e_2b_1+e_2)=0

e_1^T(Aw_1+e_1b_1)+C_1e_2^T(Bw_1+e_2b_1+e_2)=0


结合这两个式子可以得到:

\begin{bmatrix} A^T\\ e_1^T \end{bmatrix} \begin{bmatrix} A &e_1 \end{bmatrix} \begin{bmatrix} w_1\\ b_1 \end{bmatrix} +c_1 \begin{bmatrix} B^T\\ e_2^T \end{bmatrix} \begin{bmatrix} B &e_2 \end{bmatrix} \begin{bmatrix} w_1\\ b_1+1 \end{bmatrix} =0

转化一下:

\begin{bmatrix} A^TA & A^Te_1\\ e_1^TA & m_1 \end{bmatrix} \begin{bmatrix} w_1\\ b_1 \end{bmatrix} +c_1 \begin{bmatrix} B^TB & B^Te_2\\ e_2^TB & m_2 \end{bmatrix} \begin{bmatrix} w_1\\ b_1 \end{bmatrix} +c_1 \begin{bmatrix} B^TB & B^Te_2\\ e_2^TB & m_2 \end{bmatrix} \begin{bmatrix} 0\\ 1 \end{bmatrix}=0

即:

\begin{bmatrix} A^TA & A^Te_1\\ e_1^TA & m_1 \end{bmatrix} \begin{bmatrix} w_1\\ b_1 \end{bmatrix} +c_1 \begin{bmatrix} B^TB & B^Te_2\\ e_2^TB & m_2 \end{bmatrix} \begin{bmatrix} w_1\\ b_1 \end{bmatrix} +c_1 \begin{bmatrix} B^Te_2\\ m_2 \end{bmatrix}=0

其中 m_1 来自于 m_1 = e_1^Te_1=\sum_{i=1}^{m_1}1*1m_2 同理。


提取 \begin{bmatrix} w_1\\ b_1 \end{bmatrix} 得到:

\begin{bmatrix} w_1\\ b_1 \end{bmatrix} =\begin{bmatrix} B^TB+\frac{1}{c_1}A^TA & B^Te_2+\frac{1}{c_1}A^Te_1\\ e^TB+ \frac{1}{c_1}e^TA& m_2+\frac{1}{c_1}m_1 \end{bmatrix}^{-1} \begin{bmatrix} -B^Te_2\\ -m_2 \end{bmatrix}

等同于:

\begin{bmatrix} w_1\\ b_1 \end{bmatrix} =\begin{bmatrix} \begin{bmatrix} B^T\\ e^T_2 \end{bmatrix} \begin{bmatrix} B & e_2 \end{bmatrix} +\frac{1}{c_1} \begin{bmatrix} A^T\\ e^T_1 \end{bmatrix} \begin{bmatrix} A & e_1 \end{bmatrix} \end{bmatrix}^{-1} \begin{bmatrix} -B^Te_2\\ m_2 \end{bmatrix}

令 E=\begin{bmatrix} A & e_1 \end{bmatrix} ,\; F=\begin{bmatrix} B & e_2 \end{bmatrix}则有

\begin{bmatrix} w_1\\ b_1 \end{bmatrix} =-(F^TF+\frac{1}{c_1}E^TE)^{-1}F^{T}e_2

同理,求出另一个超平面的公式为:

\begin{bmatrix} w_2\\ b_2 \end{bmatrix} =-(E^TE+\frac{1}{c_2}F^TF)^{-1}E^{T}e_1

        在对一个新的数据进行分类时,只需要计算它到两个超平面的距离,它的类别就是距离更近的超平面对应的类别。

3. 算法流程

1. 按上面公式计算矩阵 E 和矩阵 F
2. 选择超参数 c1 和 c2
3. 按上面公式计算平面的超参数
4. 分类时,计算样本点到两个超平面的距离

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值