吴恩达深度学习之序列模型(一)

1.1 为什么选择序列模型(why sequence models?)

循环神经网络之类的模型在自然语言处理,语音识别有着广泛地应用,如音乐生成,电影评分,机器翻译等。如下图所示:

这里写图片描述

1.2 数学符号(Notation)

我们如果想建立一个序列模型它的输入语句如下:


这里写图片描述

假设我们建立一个能够自动识别句中人名位置的序列模型,那么这就是一个命名实体识别问题,命名实体识别常用于搜索引擎。
我们看到上述输入数据是9个单词组成的序列,所以我们最终会有9个特征集合来表示这9个单词,并按序列中的位置进行索引。我们将用

未完待续……………………………

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值