《EpiDope:A Deep Neural Network for linear B-cell epitope prediction》
PaperInfo
- 作者: 马克西米利安· 科拉茨( Maximilian Collatz) 、弗洛里安· 莫克( Florian Mock) 马丁·
霍尔泽(MartinHölzer)、伊曼纽尔· 巴斯( Emanuel Barth) 、康拉德· 萨克斯( Konrad
Sachse)、曼佳· 玛兹(Manja Marz) - 单位:德国 弗里德里希·席勒大学,耶拿
- 发表时间:2020年5月25日
paper
数据、补充材料
code
目录
Abstract
通过结合抗原蛋白上的特定结构,即所谓的表位,B细胞抗体可以中和病原体。B细胞表位的鉴定对于发展特异的血清学诊断方法和优化医学治疗具有重要价值。然而,识别与诊断或治疗相关的表位是一项具有挑战性的任务,通常涉及广泛的实验室工作。在这项研究中,作者表明,将其用于silico预测,可以显著缩短实验室表位检测的时间、成本和劳动密集型过程。在这里,作者介绍了EpiDope,这是一种python工具,它使用深度神经网络来检测单个蛋白质序列上的B细胞表位区域。由于ROC曲线的曲线下面积(AUC)在0.67±0.07之间,EpiDope超过了目前使用的所有其他B细胞预测工具。此外,对于AUC10%(假阳性率<0.1的AUC),与其他最先进的方法相比,EpiDope提高了预测精度。作者的软件被证明可以可靠地预测给定蛋白质序列的线性B细胞表位,从而大大减少了实验室实验和传统方法所需的成本。
Introduction
公共卫生系统高度依赖疫苗的使用来保护民众免受一系列危险传染病的侵袭。经过几十年的系统接种,麻疹、腮腺炎、风疹、百日咳、脊髓灰质炎、白喉、破伤风等疾病已基本根除[1,2]。接种疫苗也是避免或减少抗生素处方的有效方法,因此,可以最大限度地减少出现更多多重耐药的微生物病原体菌株。为了在人群水平上评估疫苗接种的保护程度,需要开发更快、更有效的血清学工具。他们应该能够识别群体免疫多样性中的地理和社会异质性[3,4]。此外,了解患者的免疫状况也很重要,以避免不必要的疫苗接种。在这不是或只有不完全记录在案的情况下,各种测试可以用来确定哪些特定免疫已经存在,哪些疫苗缺失。然而,目前使用的血清学检测仍然主要基于ELISA技术,只能检测到针对单一特定病原体的抗体[4]。这些检测不仅速度慢、费用高,而且通常还使用全细胞抗原来检测抗体,这限制了它们的特异性[5]。
宿主免疫系统的B细胞抗体能够检测到某些暴露的氨基酸,然后结合相应的抗原蛋白。这些结合蛋白区域称为表位,代表感染和免疫反应之间的界面[6,7]。与表位结合的抗体部分称为副表位。表位本身不是蛋白质的固有特征,而是由与结合副表位的相互作用定义的关系单元[6]。这种相对模糊的定义使得预测Silico中的表位成为一项具有挑战性的任务[7,8]。此外,表位分为线性表位和构象表位,其中线性表位由一段连续的氨基酸组成,构象表位由通过蛋白质折叠聚集在一起的表面残基原子组成[6]。在本研究中,作者将重点研究线性B细胞表位的预测。
预测线性B细胞表位的常用工具是Jespersen等人提出的BepiPred[9]。其工具的接收器操作特性(ROC)曲线的曲线下面积(AUC)为0.57。这与“免疫表位数据库”(http://tools.iedb.org/Main/bcell/)提供的其他预测尺度不相上下,说明了silico表位鉴定的难度。因此,作者开发了一种基于深度神经网络(DNN)的工具EpiDope,它可以根据蛋白质的初级氨基酸序列来检测蛋白质的表位区域。
DNN通常用于对待分类对象的有用特征了解有限复杂的分类问题。有了足够的数据,DNN可以自动识别适当的分类特征,使DNN非常适合预测线性B细胞表位[10]。
作者将展示作者的基于DNN的程序EpiDope成功地识别了线性B细胞表位,RO