线性空间的定义:
这里复习一下数域是啥:数的集合,对加减乘除都封闭。
集合的积:S1*S2 = {(x1,x2),x1∈S1,x2∈x2}。
定义里面的映射就是从(x1,x2)到x3的映射,V*V-->V就代表对每个(x1,x2)都可以对应一个V内的x3。这里的x1,x2都是V里面的,因此可以作为加法。
乘法方面则要求k是来自一个正儿八经的数域,最后的结果也来自于V.
V既有加法,又有数乘法,则V关于+与*是F上的线性空间。(强调这个加法,乘法和F)
线性空间基本上是为向量量身定制的,向量空间与线性空间常常通用。
啥叫“通常的运算规则”?
线性空间的一些例子:
基与坐标:
首先先复习一下向量组线性相关性。
可以发现,如果向量组中有全为零的向量,则这个向量组一定线性相关。事实上,想要向量组线性无关,只要向量组的秩等于p就可以了。可见这个向量组不能太大,毕竟向量组的秩再大不能超过向量的长度。
根据线代的知识我们知道,这种方程在向量组秩为p的时候解向量只有0(也就是x全都等于0才能为解),秩为p-1的时候有一个线性无关的解向量,p-2的时候有两个……
两个向量组之间的线性表示关系:
之前是齐次向量组解方程,这个地方就是非齐次的了。复习一下,非齐次方程组的解法就是找一个特解(用传统方法就可以解出来)然后加上齐次方程组的通解。
矩阵乘法秩都是越来越小的,可见b的秩<=a的秩
若a可表示b,b可表示c,那么显然a可以表示c
向量组的极大无关组:
显然这个极大无关组的大小等于向量组的秩
找极大无关组也很简单,就一直做行变换,弄成行阶梯型,对应向量就是极大无关组的成员
这个也很明显,毕竟扁的意味着秩不可能等于向量个数
基与坐标:
基矩阵乘以坐标向量可以表示任意抽象向量。
实数域上的线性空间R[x]n就是说a0+a1*x+a2*x^2……这样子的式子
这里的R[x]也是多项式,而且x的次数可以无限制,因此是无限维的。
简单来说就是每一个在线性空间里面的点都可以被基表示,每个基也只会表示一个点
标准基:
是基的充要条件是非奇异矩阵(就是可逆矩阵)