文章目录
一· 概述
本文档主要记录使用工程源代码,部署YOLOv5训练环境以及测试环境的过程,主要包括以下内容:
YOLOv5
对应版本的源码下载Pytorch
的适配版本安装与测试YOLOv5
源码的依赖安装与测试- 其他依赖的版本调整与测试
- 字体文件、预训练模型的下载
- 训练流程的测试
注:如果需要快速安装推理环境(不需要训练),参考[[YOLOv5快速推理方法]]
二· 依赖环境(prerequisites
)
本文档主要记录的是 YOLOv5
v6.1
版本的环境部署与测试,使用 Anaconda
或 miniconda
进行虚拟环境和包管理器,因此在执行安装之前,需要确认机器的预安装环境。
2.1 硬件环境
- GPU :
NVIDIA GeForce GTX2060
- RAM :
16GB
- CPU :
Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz
- ROM :
512GB SSD
注: 一般情况下,训练都会在GPU上进行,因此GPU的性能对训练速度有较大的影响。确保本地已安装
NVIDIA
独立显卡,否则训练耗时会非常长。
2.2 软件环境
- 操作系统 :
Windows 10
Anaconda3
或miniconda3
Python
:3.8+
- NVIDIA驱动 :
latest
- CUDA :
11.2
- cuDNN :
8.2.1
三· 环境安装
注: 确保上述软硬件环境已经安装完毕,不在赘述。
3.1 创建并激活虚拟环境
# 创建虚拟环境
conda create -n yolo python=3.8 -y
# 激活虚拟环境
conda activate yolo
3.2 安装Pytorch
与torchvision
访问Pytorch
官方网站,查询符合本地硬件配置与软件环境安装指令,这里选择 适配 CUDA 11.3
的Pytorch v1.12.1
,安装指令如下:
# CUDA 11.3
conda