YOLOv5训练自定义数据集模型的参数与指令说明

一· 概述

📚 本文档主要记录如何在单台或多台机器上使用单个或多个 GPU 正确训练 YOLOv5 数据集 🚀。

二· 准备工作

训练环境安装,参考YOLOv5训练环境的部署与测试

自定义训练数据集处理,参考YOLOv5训练数据集的创建与格式说明

训练集配置文件的处理,参考YOLOv5训练数据集的配置文件说明

三· 参数说明

选择一个预训练模型作为训练的起点。这里我们选择 YOLOv5s,这是最小的、最快的可用模型。请参阅我们的 README 表格,了解所有模型的完整比较。我们将使用多 GPU 在 COCO 数据集上训练此模型。

首先看一下官方源代码脚本中提供了哪些参数:

parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')

先重点关注以下参数:

  • --weights:预训练权重的路径。默认为 yolov5s.pt
  • --cfg:模型配置文件的路径。默认为空。如果指定此配置文件,模型将从头开始训练
  • data: 训练数据集配置文件路径。默认为 YOLOv5 提供的 coco128.yaml
  • epochs: 训练轮次。默认为300
  • batch-size: 每个 GPU 的批次大小。默认为16,按照GPU显存大小调整
  • device: 指定使用的训练设备。可指定 cuda device,如 00,1,2,3cpu
  • name: 保存的项目名称。默认为 exp,可根据实际情况修改

四· 训练模型

启动训练前,需要先下载预训练模型权重文件,下载地址:yolov5s.pt

如果你想从头开始训练,还需要根据自己的数据集创建一个模型配置文件,修改默认的模型配置文件,如 yolov5s.yaml,修改 nc 的值为你的数据集类别数。 例如,以猫狗识别数据集为例,将默认的 nc80 修改为 2,如下所示:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
# nc: 5  # 原coco数据集类别数
nc: 2  # 自定义猫狗数据集类别数
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

4.1 单 GPU 训练

从预训练模型开始训练,训练自定义数据集或使用不同尺寸的模型,相应的更改 --data--weights 参数即可,指令如下:

python train.py --weights yolov5s.pt --data coco.yaml --batch-size 64 --device 0 --name yolov5s_results

训练完成后,模型文件保存在 runs/train/yolov5s_results 目录下。

如果数据量足够多,可以选择从头开始训练,需要添加 --cfg 参数指定模型的配置文件,同时,--weights 参数值为空,指令如下:

python train.py --cfg yolov5s.yaml --weights "" --data coco.yaml --batch-size 64 --device 0 --name yolov5s_results

YOLOv5 提供了多种模型配置文件,如 yolov5s.yamlyolov5m.yamlyolov5l.yamlyolov5x.yaml,可以根据实际情况选择合适的模型配置文件。
800

4.2 多 GPU 训练

多 GPU DataParallel 模式(⚠️ 不推荐

你可以在 DataParallel 模式下增加设备以使用多个 GPU。

python train.py --weights yolov5s.pt --data coco.yaml --batch-size 64  --name yolov5s_results --device 0,1

与只使用 1 个 GPU 相比,此方法速度较慢,几乎不会加快训练速度。

多 GPU DistributedDataParallel 模式(✅ 推荐)

使用此模式需要使用指令 python -m torch.distributed.run --nproc_per_node,后面再跟上训练参数。例如,使用 2 个 GPU 训练 YOLOv5s 模型,指令如下:

python -m torch.distributed.run --nproc_per_node 2 train.py --batch 64 --data coco.yaml --weights yolov5s.pt --device 0,1

注意: --nproc_per_node 参数指定你要使用的 GPU 数量。在上面的示例中,它是 2。--batch 是总批次大小。它将平均分配给每个 GPU。在上面的示例中,它是 64/2= 32/GPU

💡 提示!PyTorch>=1.9 中,torch.distributed.run 替换了 torch.distributed.launch。有关详细信息,请参阅文档。

使用特定 GPU

你可以通过简单地传递 --device 后跟你的特定 GPU 来做到这一点。例如,在下面的代码中,我们将使用 GPU 2,3

python -m torch.distributed.run --nproc_per_node 2 train.py --batch 64 --data coco.yaml --cfg yolov5s.yaml --weights '' --device 2,3

使用 SyncBatchNorm

SyncBatchNorm 可以提高多 GPU 训练的准确性,但是,它会显著降低训练速度。它适用于多 GPU DistributedDataParallel 训练。当每个 GPU 上的批次大小较小(<=8)时,最好使用它。要使用 SyncBatchNorm,只需将 --sync-bn 传递给命令,如下所示,

python -m torch.distributed.run --nproc_per_node 2 train.py --batch 64 --data coco.yaml --cfg yolov5s.yaml --weights '' --sync-bn

五· 模型评估

训练完成后,可以使用以下命令评估模型的性能:

python val.py --data coco.yaml --weights runs/train/yolov5s_results/weights/best.pt --task test

注意: --weights 参数指定了你要评估的模型的权重文件路径。在上面的示例中,它是 runs/train/yolov5s_results/weights/best.pt--task 参数指定了你要执行的任务。在上面的示例中,它是 test,表示评估模型在测试集上的性能,如果是 val,表示评估模型在验证集上的性能。

指令示例

1. 单 GPU 训练

python train.py --weights "" --cfg /path/to/model_cfg.yaml --data /path/to/customer_dataset.yaml --epochs 300 --batch-size 16 --device 0 --name yolov5s_results

2. 多 GPU 训练

python -m torch.distributed.run --nproc_per_node 4 train.py --weights ''   --device 0,1,2,3 --data /path/to/customer_dataset.yaml --cfg /path/to/model_cfg.yaml --batch 256 --epochs 300 --name yolov5s_results
  • 17
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值