YOLOv5训练数据集的配置文件格式与使用技巧

一· 概述

本文档主要记录 YOLOv5 算法在进行模型训练前,关于加载数据集的配置文件的说明。

默认情况下,YOLOv5 官方规定了数据集的格式与文件结构,分别使用 train test val 用于保存训练集、测试集、验证集的图片与标注文本,且图片与标注文件名为一一对应关系,如下所示:

dataset_cat_dog/
├── images/
│   ├── train/
│   │   ├── img1.jpg
│   │   └── ...
│   ├── test/
│   │   ├── img5.jpg
│   │   └── ...
│   └── val/
│       ├── img10.jpg
│       └── ...
└── labels/
    ├── train/
    │   ├── img20.txt
    │   └── ...
    |── test/
    │   ├── img25.txt
    │   └── ...
    └── val/
        ├── img30.txt
        └── ...

下面将详细讲解如何按照 YOLOv5 的要求,配置数据集的配置文件。

二· 配置文件说明

2.1 官方配置文件解析

YOLOv5 官方在源代码中提供了一个默认的配置文件 data/coco128.yaml,用于指定数据集的路径、类别数量、类别名称等信息,如下所示(以下内容为翻译版本,源文件链接 : coco128.yaml ):

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO128 数据集 https://www.kaggle.com/ultralytics/coco128 (COCO数据集中train2017部分的前128张图片) 出自 Ultralytics
# 使用示例 : python train.py --data coco128.yaml
# 目录结构如下:
# parent
# ├── yolov5
# └── datasets
#     └── coco128  ← 如本地没有数据集,则会自动下载到这里


# 训练/验证/测试集可以使用以下三种方式指定:1) 目录:path/to/imgs,2) 文件:path/to/imgs.txt,或者 3) 列表:[path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128  # 数据集根目录
train: images/train2017  # 训练集图片目录 ('path'的相对路径) 128 images
val: images/train2017  # 验证集图片目录 ('path'的相对路径) 128 images
test:  # test images (optional)

# Classes
nc: 80  # 类别数量
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值