例题:求函数
的表达式 并讨论函数的连续性。
分析解答:求表达式就是要求数列的极限。
(这是因为,自然数列在
时 和 函数
同时趋向 于无穷大,故函数和子列有同样的极限。即是所给极限是对应函数的子列。数列 是 对应函数 自变量 的一些离散点构成数列(子列)
函数列是函数的子列。且函数列和函数有相同的极限。但可以推广,不仅限于自变量的离散点,而只要在数列的在n趋向于无穷大时,数列收敛于,自变量的趋向即可。)
令
1.当 ,
即是 也就是
2.当 ,
2.1 若
2.2
综上, ,第一问得证 。
第二问:有表达式可以知道函数在个分段点出连续 ,因而在整个区间上连续 。
总结:组要在于求数列极限,数列极限可以转化为函数极限,然后根据x的不同的取值范围,讨论函数的极限;从而确定出不同区间上的f(x) 的表达式。
例题:设函数 在
上连续,
是
的一个点列,求极限
解答:令 ,则函数
在
上连续.不妨设点
把区间
平均分成n份
则根据定积分的定义有