19题:
设函数
在
上具有连续导数,
,
证明:
(1)存在
使得
(2)若对于任意的
,
,则M= 0 。
证明:
由
至存在一点C使得 ,
且 C为
的极值点 ;
因为函数
在区间上
连续可导,所以必有
.
(1)
函数
在
2020 考研数学一 全解析
最新推荐文章于 2022-07-01 23:33:36 发布
19题:
设函数
在
上具有连续导数,
,
证明:
(1)存在
使得
(2)若对于任意的
,
,则M= 0 。
证明:
由
至存在一点C使得 ,
且 C为
的极值点 ;
因为函数
在区间上
连续可导,所以必有
.
(1)
函数
在