反常积分判敛

无穷限反常积分收敛的必要条件:

反常积分 \tiny I=\int_{a}^{+\infty } f(x)dx 收敛,则有 \tiny \lim_{x \to +\infty} f(x)=0,即\tiny f(x)是 \tiny x \to +\infty 的无穷小量

证明:

(1)若\tiny \lim_{x \to +\infty} f(x)=\infty  ,根据定积分的定义,积分是发散的。 

(2)若\tiny \lim_{x \to +\infty} f(x)=C(\neq 0) 则\tiny I=\int_{a}^{+\infty } f(x)dx=C\int_{a}^{+\infty }dx=\lim_{x \to +\infty} Cx-Ca=+\infty

(3)从而,必有\tiny \lim_{x \to +\infty} f(x)=0

     

TIp:  反之不成立。 

 

一个结论:

\tiny g(x)=\frac{1}{x^p} ,(p>0) 是 \tiny x \to +\infty 的无穷小量。 

 

无穷限积分的极限审敛法的改写:

给定反常积分

                      \tiny I=\int_{a}^{+\infty } f(x)dx ,

(1) \tiny \lim_{x \to +\infty} x^pf(x) =\frac{f(x)}{\frac{1}{x^p}}= C(\neq 0),即是  \tiny f(x) 和 \tiny \frac{1}{x^p}  是同阶无穷小,则反常积分 \tiny I=\int_{a}^{+\infty } f(x)dx 和 \tiny I=\int_{a}^{+\infty } \frac{1}{x^p}dx  同时收敛,同时发散 。

(2)\tiny \lim_{x \to +\infty} x^pf(x) =\frac{f(x)}{\frac{1}{x^p}}=0,当\tiny I=\int_{a}^{+\infty } \frac{1}{x^p}dx 收敛时,\tiny I=\int_{a}^{+\infty } f(x)dx 也收敛。

当     \tiny I=\int_{a}^{+\infty } \frac{1}{x^p}dx 发散时,无法判断 \tiny I=\int_{a}^{+\infty } f(x)dx 是收敛性。 

例题:

设 \tiny a,b>0 ,反常积分\tiny I=\int_{0}^{+\infty } \frac{1}{x^a(2020+x)^b}dx  收敛,则有a<1且a+b>1,对吗?

解答:

\tiny I=\int_{0}^{+\infty } \frac{1}{x^a(2020+x)^b}dx =\int_{0}^{1 } \frac{1}{x^a(2020+x)^b}dx + \int_{1}^{+\infty } \frac{1}{x^a(2020+x)^b}dx =I_1+I_2

 

对于

\tiny I_1= \int_{1}^{+\infty } \frac{1}{x^a(2020+x)^b}dx收敛,根据上边的定理应有 

(1)当 被积函数是 \tiny \frac{1}{x^p} 是同阶无穷小时,应有  \tiny p=a+b >1;

(2)当 被积函数是 \tiny \frac{1}{x^p} 是高阶阶无穷小时 \tiny 1<p<a+b

 

 

对于

\tiny I_2= \int_{0}^{1} \frac{1}{x^a(2020+x)^b}dx 收敛,根据上边的定理

(1)当 被积函数是 \tiny {x^p} 是同阶无穷小时,应有  \tiny q=a<1;  

(2)当 被积函数是 \tiny {x^p} 是高阶阶无穷小时 \tiny 1>q>a

这时因为 \tiny (2020+x)^b 不是 \tiny x \to 0^+ 的无穷小量。

因此,结论正确。

解法2:

为了判定\tiny I_1= \int_{1}^{+\infty } \frac{1}{x^a(2020+x)^b}dx 的收敛性,作极限 

                                            \tiny \lim_{x \to \infty} \frac{x^p}{x^a(2020+x)^b}  此极限要存在且 \tiny I_1收敛应有  \tiny a+b \geq p>1

为了判定    \tiny I_2= \int_{0}^{1} \frac{1}{x^a(2020+x)^b}dx 的收敛性,作极限 

                                            \tiny \dpi{200} \tiny \lim_{x \to 0^+} \frac{x^q}{x^a(2020+x)^b}=\frac{1}{2020^b}\lim_{x \to 0^+} \frac{x^q}{x^a} 

                                                                    此极限存在且 \tiny I_2 收敛,应有 \tiny 1 > q \geq a 

 

 

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值