对称性在第一型曲线积分中的应用

一、中心对称情形 

 

定理1.         若积分曲线L关于原点对称:

当 f 为关于原点的奇函数时,即f(-x,-y)=-f(x,y) 时,

                                                                    \int_{L}f(x,y)ds= 0

当 f 为关于原点的偶函数时,即f(-x,-y)=f(x,y) 时,

                                                                    \int_{L}f(x,y)ds=2 \int_{L_1}f(x,y)ds = 2 \int_{L_2}f(x,y)ds 

                                                            (其中,L_1 ,L_2 是关于原点对称的两部分 )

 推论:

若被积函数在积分曲线上是关于积分曲线中心(a,b)的奇函数,那么有

                                                                           \int_{L}f(x,y)ds= 0

若被积函数在积分曲线上是关于积分曲线中心(a,b)的奇函数,那么有

                                                        \int_{L}f(x,y)ds=2 \int_{L_1}f(x,y)ds = 2 \int_{L_2}f(x,y)ds

                                             (其中,L_1 ,L_2 是关于原点对称的两部分 )

二、轴对称情形

注意:

1.关于线对称的奇偶函数,即是在关于线对称的坐标处的函数值要么互为相反数(奇),要么相等(偶)

2.着重掌握关于坐标轴对称情形。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值