一、中心对称情形
定理1. 若积分曲线L关于原点对称:
当 f 为关于原点的奇函数时,即 时,
当 f 为关于原点的偶函数时,即 时,
(其中, 是关于原点对称的两部分 )
推论:
若被积函数在积分曲线上是关于积分曲线中心(a,b)的奇函数,那么有
若被积函数在积分曲线上是关于积分曲线中心(a,b)的奇函数,那么有
(其中, 是关于原点对称的两部分 )
二、轴对称情形
注意:
1.关于线对称的奇偶函数,即是在关于线对称的坐标处的函数值要么互为相反数(奇),要么相等(偶)
2.着重掌握关于坐标轴对称情形。