TensorFlow-断点续训

import tensorflow as tf
import os

mnist = tf.keras.datasets.mnist
(x_train,y_train),(x_test,y_test) = mnist.load_data()
x_trian,x_test = x_train / 255.0,x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128,activation='relu'),
    tf.keras.layers.Dense(10,activation='softmax')
    ])
model.compile(
    optimizer = 'adam',
    loss = tf.keras.losses.CategoricalCrossentropy(from_logits=False),
    metrics = ['sparse_categorical_accuracy']
    )
checkpoint_save_path = "./checkpoint/mnist.ckpt" #存放模型的路径和文件名
#在生成ckpt文件的同时,也会生成索引表,所以通过判断有没有生成索引表,来判断是不是保存模型参数了
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-------------------')
    model.load_weights(checkpoint_save_path)
    #用load_weights函数,来读取文件
#保存模型参数用callbacks函数,
cp_callback = tf.keras.callbacks.ModelCheckpoint(
    filepath = checkpoint_save_path,
    save_weights_only = True,#是否只保留模型参数
    save_best_only = True#是否只保留最优结果
    )    
#在执行训练时,加入callbacks回调选项,返回给history
history = model.fit(
    x_train,y_train,batch_size=32,epochs=5,validation_data=(x_test,y_test),
    validation_freq=1,callbacks=[cp_callback]
    )
model.summary()
"""
Total params: 101,770
Trainable params: 101,770
Non-trainable params: 0
"""     

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值