nvidia a100-pcie-40gb环境安装

安装screen: 1:apt-get install screen 2:apt-get update
1.conda create --name torch_li python=3.8
2. conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch
环境测试:torch.cuda.is_available()
3.conda remove -n torch_li --all
4.pip install opencv-python-headless -i https://pypi.tuna.tsinghua.edu.cn/simple
5.pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
6.pip install imageio -i https://pypi.tuna.tsinghua.edu.cn/simple
7.pip install tensorboardX -i https://pypi.tuna.tsinghua.edu.cn/simple
8.pip install tensorboard -i https://pypi.tuna.tsinghua.edu.cn/simple
9.pip install tensorflow -i https://pypi.tuna.tsinghua.edu.cn/simple
10.pip install medpy -i https://pypi.tuna.tsinghua.edu.cn/simple
11.pip install nibabel -i https://pypi.tuna.tsinghua.edu.cn/simple
12.pip install sci

Tesla A100 40GB PCIENVIDIA公司推出的一款面向加速计算领域的GPU产品。它基于Ampere架构,专为数据中心和高性能计算(HPC)应用而设计,提供了先进的计算性能、AI处理能力以及优化的内存带宽。该产品支持PCI Express(PCIE)接口,能够安装在服务器和工作站上,提供强大的图形和计算加速。 以下是该GPU的一些关键特性: 1. 核心与性能:Tesla A100 40GB PCIE基于NVIDIA Ampere架构,搭载了超过540亿个晶体管,拥有超过540亿个晶体管,具备高达6912个CUDA核心和40GB的HBM2e内存。 2. AI性能:得益于全新的Tensor Core技术,它支持第三代Tensor Core,提供了更高的AI性能,能够加速AI训练和推理任务。 3. 内存容量与带宽:配备了40GB的HBM2e内存,提供了高达1.6TB/s的内存带宽,这对处理大型数据集和复杂模型至关重要。 4. 连接性与兼容性:支持PCI Express Gen4,这意味着它具有更高的带宽和更低的延迟,能够与最新的服务器主板兼容。 5. 多实例GPU(MIG)功能:允许单个GPU被分割成多达七个独立的GPU实例,从而为更多的用户或工作负载提供服务。 6. NVLink与PCIe连接:支持NVLink技术,可以将多个GPU连接起来形成GPU集群,用于需要大量并行计算能力的复杂问题。 7. 软件支持:NVIDIA提供了完整的软件生态,包括CUDA Toolkit、cuDNN以及TensorRT等,以支持广泛的AI和计算框架。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值