为什么压缩文件压缩后大小不变?6种方法教你1G变200MB

为什么压缩文件压缩后大小不变为什么zip压缩后大小没变呢?有以下几个原因,检查手里的压缩文件格式,有些文件格式已经是有损压缩算法,比如视频里的MP4格式、图片里的jpg格式以及音频里的MP3格式,如果这个时候还使用压缩包格式尤其是zip压缩包格式,那么对文件体积当然不会有明显的变小,首先压缩包格式本身便是一种无损压缩格式,解压缩即可恢复到原有的文件大小,其次zip压缩包格式压缩级别较小,可以更改为高压缩率的7z格式。其次我们可以使用文件有损压缩工具对不同的文件进行分类压缩,在人眼不易察觉的范围内进行压缩,这种方法可以大大降低文件体积。下面就向大家介绍如何有效的压缩文件体积大小的具体步骤。

方法一:分类压缩+压缩包压缩

1、野葱解压缩

以视频压缩为例,我们可以先使用有损压缩将文件压缩到一个合适的大小,然后再选择使用压缩包格式进行二次压缩,选择压缩包格式也有技巧,相比zip格式,7z 格式是一种压缩率很高的格式,压缩率一般在 20% - 50% 左右。下面是具体的操作步骤:

步骤1,打开软件界面,可以看到分为上下两类压缩类型,不仅支持一键解压缩,还支持对视频、图片、PDF、Word、PPT文件进行分类压缩。我们先选择【文件大小压缩】里的【视频压缩】功能。

步骤2,选择合适的【压缩模式】,普通压缩(约20%)、清晰度优先(约10%)、极限压缩(约50%)。

步骤3,压缩完成后,返回到主界面,二次压缩,点击【一键压缩】

步骤4,在【压缩偏好】中,选择【自定义】,选择目标格式为【7z】,压缩方式为【体积更小】,最后点击立即压缩即可。

方法二:有损压缩类工具

2、SmallPDFs(压缩PDF)

特点:在线操作,无需安装软件,支持多种设备访问。可自动优化图片质量,去除不必要的元数据,有效减小文件体积,且不影响文档的可读性。对 PDF 文件兼容性好,能保持原有格式和排版。

步骤:打开 SmallPDFs 官网,选择 “压缩 PDF” 选项,上传目标文件,系统自动压缩,压缩完成后点击下载按钮,将压缩后的文件保存到本地。

3、Red panda compress(压缩视频)

特点:在线转换平台,无需下载软件,操作便捷。压缩处理后的视频无水印,但压缩选项有限。支持 MP4、WebM、MOV、WMV 等格式,最大支持 2GB 文件。

步骤:在浏览器搜索进入网站,上传待压缩的视频文件,通过拖动进度条或手动调整设置输出文件的大小,点击 “开始压缩”,完成后下载压缩后的文件。

4、TinyPNG(压缩图片)

特点:采用智能有损压缩技术,能在保留图像质量的同时大幅减小文件大小。支持 PNG、JPEG 等常见图片格式,压缩速度快,效果好。可批量上传图片,且提供下载链接。

步骤:打开 TinyPNG 官方网站,将需要压缩的图片拖动到网站页面中,或点击 “选择文件” 按钮上传,上传完成后自动压缩,显示压缩后的文件大小和压缩比例,点击 “下载全部” 按钮保存压缩后的图片。

类型三:无损压缩类工具

5、360压缩(win端/mac端)

特点:兼容 42 种压缩文件格式,解压速度快,内置木马云查杀功能,保护电脑安全。

步骤:可通过右键菜单,选中文件后,选择【添加到压缩文件…】,设置好选项,点击【立即压缩】;也可打开软件主界面,点击【添加】图标,设置选项后点击【立即压缩】。

6、keka(mac端)

特点:操作简便:无需打开软件,将文件拖放到 Dock 上的 Keka 图标即可压缩,也可打开软件将文件拖入窗口进行压缩。支持加密压缩、分卷压缩,还可设置压缩级别,满足不同需求。

压缩步骤:打开 Keka,选择要压缩的文件或文件夹拖放到 Keka 窗口,选择压缩格式,如 7z、zip 等,设置压缩级别、密码等选项,点击 “压缩” 按钮,压缩后的文件将保存在原文件所在位置。

总结

以上就是为什么压缩后大小没变化的原因啦,以及如何把文件尽可能的压缩变小的方法,因为有些文件格式已经是有损压缩算法,我们可以使用文件有损压缩工具对不同的文件进行分类压缩,在人眼不易察觉的范围内进行压缩,或者更换压缩包格式为7z格式,可以有效减小文件的体积。

<think>好的,我现在需要回答用户关于“模型微调后大小变化”的问题。用户之前询问过如何从checkpoint继续训练,现在这个问题可能涉及到微调的技术细节。首先,我需要理解用户为什么会觉得模型微调后大小变化。可能的情况是用户检查了模型文件大小,发现微调前后的模型文件大小相同,或者用户预期微调会改模型结构导致大小变化,但实际上有。 接下来,我需要分析可能的原因。模型微调通常是指对预训练模型的参数进行调整,以适应特定的任务。微调并不会改模型的结构,只是调整参数值,所以模型的大小(参数量)应该保持不变。但用户可能认为微调会改结构,或者有其他误解。 需要分点解释原因: 1. **参数更新而非结构修改**:微调调整的是模型权重,结构不变,所以参数量相同,文件大小相近。 2. **量化或保存格式影响**:可能保存时的格式不同,如FP32和FP16,但通常影响不大。 3. **仅部分参数训练**:比如LoRA等方法,但用户可能有使用这些方法,导致整体参数不变。 4. **检查文件的方式**:用户可能有正确检查文件,比如查看参数数量而非文件大小,或者压缩的影响。 此外,需要解释为什么模型大小不变是正常的,并给出验证方法,帮助用户确认是否正常。还要提到可能的例外情况,如使用适配器方法时,但通常微调不改大小。 可能需要举例说明,比如PyTorch中保存模型时参数数量不变文件大小相近。同时,提醒用户检查是否有额外的适配器参数被保存,或者是否保存了优化器状态等,导致文件大小变化。 需要确保语言简洁明了,结构清晰,分点列出原因、验证方法和例外情况。避免使用过多专业术语,但又要准确。最后总结,确认这是正常现象,并指导用户如何进一步验证。</think>当模型微调后文件大小保持不变,这是正常现象。以下是关键原因解析和验证方法: **核心原因分析**: 1. **参数结构不变性** - 微调仅更新权重数值,不改网络结构 - 参数矩阵形状保持不变 $\Rightarrow$ 总参数量恒定 - 示例:BERT-base的110M参数微调后仍是110M参数 2. **存储机制特性** - 权重数值变化不影响存储空间占用 - 浮点数存储格式固定(如FP32每个参数占4字节) - 计算示例: $$1\text{亿参数} \times 4\text{字节} = 400\text{MB}$$ 3. **选择性参数更新** - 常见于部分参数冻结的微调 - 实际存储仍需保留全部参数 - 图示说明: ``` [原始参数] [冻结层] [可训练层] → 保存时仍包含全部参数 ``` **验证方法**: 1. **参数数量检查** ```python # PyTorch示例 total_params = sum(p.numel() for p in model.parameters()) print(f"参数量: {total_params:,}") # 微调前后应相同 ``` 2. **权重差异检测** ```python pretrained = torch.load("pretrained.pt") finetuned = torch.load("finetuned.pt") for (k1,v1), (k2,v2) in zip(pretrained.items(), finetuned.items()): print(f"{k1} 差异度: {torch.mean(torch.abs(v1-v2)):.4f}") ``` 3. **文件大小计算** ```bash # 查看实际存储字节数 ls -lh model.bin # 典型输出:-rw-r--r-- 1 user 1.2G Jul 1 10:00 model.bin ``` **特殊场景例外**: 1. **适配器微调** - 添加Adapter层会增加参数(如LoRA) - 但需要显式保存新增参数 - 示例结构变化: ``` Dense → Dense+LoRA (新增低秩矩阵) ``` 2. **量化微调** - 4bit量化后模型体积减小 - 但需要特殊处理(如bitsandbytes库) - 对比示例: ``` FP32模型: 1.2GB → 4bit量化后: 0.3GB ``` 3. **额外信息保存** - 当checkpoint包含优化器状态时体积会增大 - 仅保存模型权重时应保持体积不变 - 典型内容差异: ``` 纯权重文件: 1.2GB 含优化器的checkpoint: 2.4GB ``` **最佳实践建议**: 1. 使用`model.size()`方法验证内存占用 2. 对比微调前后预测结果的差异 3. 监控训练日志确认参数梯度更新 ```python for name, param in model.named_parameters(): if param.requires_grad: print(f"{name} 梯度均值: {param.grad.mean().item():.4f}") ``` **总结**:模型微调后体积不变是正常现象,表明仅权重数值被更新而非结构改。若需要减小模型体积,可考虑量化、剪枝或使用适配器方法。建议通过预测效果变化和梯度监控来验证微调有效性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值