Time limit
1000 ms
Memory limit
32768 kB
有N个比赛队(1<=N<=500),编号依次为1,2,3,。。。。,N进行比赛,比赛结束后,裁判委员会要将所有参赛队伍从前往后依次排名,但现在裁判委员会不能直接获得每个队的比赛成绩,只知道每场比赛的结果,即P1赢P2,用P1,P2表示,排名时P1在P2之前。现在请你编程序确定排名。
Input
输入有若干组,每组中的第一行为二个数N(1<=N<=500),M;其中N表示队伍的个数,M表示接着有M行的输入数据。接下来的M行数据中,每行也有两个整数P1,P2表示即P1队赢了P2队。
Output
给出一个符合要求的排名。输出时队伍号之间有空格,最后一名后面没有空格。
其他说明:符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前;输入数据保证是正确的,即输入数据确保一定能有一个符合要求的排名。
Sample Input
4 3
1 2
2 3
4 3
Sample Output
1 2 4 3
思路1):拓扑标准模板:
//其实就是拓扑排序,如果有多种情况,按照字典序输出
//建立一个二维数组来表示邻接矩阵,一个一维数组记录各点的入度
//依次输入一对相连的点,存入数组,并用1来标记这两个点相连
//一维数组记录的第二个点的入度数+1
/* 每一次,选一个入度为0 的顶点输出,然后将其所有后继
顶点的入度-1(即把这个顶点往外伸展的边删除),重复这
两步直至输出所有顶点,或找不到入度为0 的顶点为止
(这就是有“环”的情况) */
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int vis[1000];
int con[1000][1000];
int n,m;
void toposort()
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(!vis[j]) //如果入度为0(没有前驱点)
{
vis[j]--; //入度变成-1进行标记(入度为-1的点均为已经删除的点)
cout<<j;
if(i!=n)
cout<<" ";
else
cout<<endl;
for(int k=1;k<=n;k++)
{
if(con[j][k])
vis[k]--; //将与j相连的节点都删去(删除与j有关的边)
}
break; //注意这个break不能放在外面否则会WA
}
}
}
}
int main()
{
while(cin>>n>>m)
{
memset(vis,0,sizeof(vis));
memset(con,0,sizeof(con));
int x,y;
for(int i=1;i<=m;i++)
{
cin>>x>>y;
if(!con[x][y]) //去重
{
con[x][y]=1;
vis[y]++; //点的入度加1
}
}
toposort();
}
return 0;
}
2)拓扑排序的第二种方案:
#include<bits/stdc++.h>
using namespace std;
#define ms(a) memset(a,0,sizeof(a))
const int maxn = 510;
int vis[maxn];
int map1[maxn][maxn];
vector<int>ans;
int n,m;
priority_queue<int,vector<int>,greater<int> >q;//队列中的元素从小到大排序
void topsort()
{
for(int i=1;i<=n;i++)
if(!vis[i])
q.push(i);
int e;
while(!q.empty())
{
e=q.top();
q.pop();
ans.push_back(e);
for(int i=1;i<=n;i++)
if(map1[e][i])
{
vis[i]--;
if(!vis[i])
q.push(i);
}
}
}
int main()
{
while(cin>>n>>m)
{
int a,b;
ms(vis);
ms(map1);
ans.clear();
for(int i=1;i<=m;i++)
{
cin>>a>>b;
if(!map1[a][b])
{
map1[a][b]=1;
vis[b]++;
}
}
topsort();
for(int i=0;i<ans.size()-1;i++)
cout<<ans[i]<<" ";
cout<<ans[ans.size()-1]<<endl;
}
return 0;
}