迁移学习入门(读王晋东博客)

1.TCA

  映射使两个域边缘分布相近,限制条件为散度(衡量两个数据集的差异程度,最大化差异)

2.JDA

   在TCA基础上加入条件分布相近,此时为联合分布(两个概率分布,并非概率论中的"联合分布"),限制条件也为散度

3.深度神经网络的可迁移性

介绍 NIPS 2014的《How transferable are features in deep neural networks?》
主要是结论性的东西:
   1.神经网络的前3层基本都是general feature,进行迁移的效果会比较好;
   2.深度迁移网络中加入fine-tune(模型微调),效果会提升比较大,可能会比原网络效果还好;
   3.Fine-tune可以比较好地克服数据之间的差异性;
   4.深度迁移网络要比随机初始化权重效果好;
   5.网络层数的迁移可以加速网络的学习和优化。

此篇对原文的理解有些异议的地方:
  (1)AnB 是指对baseA前n层权重锁定,后面8-n层随机初始化后继续在数据B上训练得来,再做分类。
  (2)BnB的性能,一直到B3B貌似都不错,B4B到B5B性能下降严重,作者解释原因之一可能是4层5层与前后的层是联合起来学习特征的,“jointly trained”,将1-4层锁定只让5-8层学习,破坏了所学特征的一个“整体性”。

未考证原文,借鉴于评论区

4.深度迁移网络

DaNN

  DaNN的结构异常简单,它仅由两层神经元组成:特征层和分类器层。
  所以,整个网络的优化目标也相应地由两部分构成:在有label的源域数据上的分类误差,以及对两个领域数据的判别误差。

DDC

  在原有的AlexNet网络的基础上,对网络的fc7层(分类器前一层)后加一层适配层(adaptation layer)。适配层的作用是,单独考察网络对源域和目标域的判别能力。如果这个判别能力很差,那么我们就认为,网络学到的特征不足以将两个领域数据区分开,因而有助于学习到对领域不敏感的特征表示。

DAN

DAN相比DDC加了2点改进:
  一是多适配了几层特征;
  二是采用了之前Arthur Gretton提出的多核MMD替换掉原有的单核MMD。
多核MMD即多核加权形成一个核

5. 测地线流式核方法(GFK)

1.SGF

SGF思想:把source和target都分别看成是高维空间中的两个点,由source变换到target的过程就完成了domain adaptation。

SGF实现方法:把source和target分别看成高维空间(Grassmann流形)中的两个点,在这两个点的测地线距离上取d个中间点,然后依次连接起来。

SGF缺陷:不知道d怎么取

2.GFK

GFK解决了SGF问题
详情见以下博客

https://blog.csdn.net/qq_40824311/article/details/103984384?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522168536591816800226555621%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=168536591816800226555621&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduend~default-1-103984384-null-null.142v88insert_down1,239v2insert_chatgpt&utm_term=GFK&spm=1018.2226.3001.4187

推导过程略为抽象,本人暂未明白测地线公式是如何推导出来的,但感觉测地线思想了解就行。
  1.积分用到了与核技巧一样的方法
  2.流形映射降维的思想
  3.领域间降维度量的思想
  4.principal angle这一度量(主角对角线元素的正弦值)

6. 从经验中迁移学习

主体思想:
  1.学习出一个变换矩阵W(对于所有迁移对最优,即平均误差最小)
  2.W应该能在有新数据时进行更新(即可进行增量学习)
  3.new question:类似于增量学习,如何最大限度地利用已有的迁移学习经验,使得其对新问题的泛化能力很好?同时也可以避免一出现新问题就从头进行学习

7. 负迁移

定义:
  负迁移指的是,在源域上学习到的知识,对于目标域上的学习产生负面作用。
产生负迁移的原因:
  1.源域和目标域压根不相似,谈何迁移?------数据问题
  2.源域和目标域是相似的,但是,迁移学习方法不够好,没找到可迁移的成分。 --------方法问题

8. 《Simultaneous Deep Transfer Across Domains and Tasks》文章解读

  目前所讲的迁移学习方法都是针对domain transfer(域之间的相似度,尤其是边缘分布),不注重task transfer(class之间的相似度)。文章针对target的部分class有少量label,剩下的class无label的情况将domain transfer和task transfer相结合。
  提出joint CNN architecture for domain and task transfer方法

在这里插入图片描述
soft label loss指的是:统计source中平均概率,作用于target概率,再计算loss

9.开放集迁移学习

在这里插入图片描述
  以往的方法都是基于Close set,现提出Open set想法
Method
利用source和target关系,给target打标签。

同理,在有一部分有标签条件下引入标签作为约束,但文章并未详述。

10.张量迁移学习

相当于把多维向量运算转换成张量运算,用的也是与PCA相当的降维方法(Tucker分解)
优化方法:
在这里插入图片描述
优化方法
  即Tucker分解出两个域共有共享的子矩阵用作矩阵变换,计算变换后与源域目标域之间的差异。
在这里插入图片描述
进一步优化:优化成线性变换的形式,用于差异更大的情况
在这里插入图片描述

12.学习资源仓库

【Github仓库地址:jindongwang/transferlearning】

13.在线迁移学习

在线迁移学习(Online Transfer Learning, OTL)
Method: 基于SVM以及集成学习进行组合

SVM分类器形式
在这里插入图片描述

基于同构的迁移学习
在这里插入图片描述
  首先对源域分类器和样本分类器归一化,w表示权重,谁影响大谁权重高。

基于异构的迁移学习
在这里插入图片描述
  运用多视图学习思路,把与源域相同特征的看为视图1,不同的看为2,将两视图上的分类器结合。

14.用于部分迁移学习的深度加权对抗网络

动机:源域的类别比目标域的多,无法直接进行迁移,那么,就首先选择出源域中与目标域那部分类别最接近的样本,给它们赋予高权重,然后进行迁移。
在这里插入图片描述

15.自动选择源域的迁移学习方法

动机:源域太多了该如何选择
Method:巧妙地绕过这一点,直接通过降维矩阵构建分类器。
构建一个迁移学习分类器。我们假设要学习一个线性模型,那么这个模型的权重向量就是W.这个模型的一般形式如下所示:
在这里插入图片描述
通过最小化误差来学习权重。

16.探秘任务迁移

本文所研究的问题情境:Domain相同,task不同

Method:首先我们要对不同任务进行建模,然后让它们两两之间进行迁移并获取迁移的表现。接着为了构建一个统一的字典,我们对这些迁移结果进行归一化。最后,我们构建可迁移图。
  1.针对目标的建模
  用的是编码-解码机制
  2.迁移学习的建模
在这里插入图片描述

  3.任务相似性标准化
在这里插入图片描述

  4.计算可迁移图
  得到任务相似度矩阵后,我们的事情就简单了。我们需要在这个矩阵里找一条路,选择从多个源域到 t 的这条路上,迁移表现最好。

Experiments
从中我们得出的结论是,如果能够选择好源域任务,那么通常来说迁移学习的表现都要比直接从目标领域训练要好

18.深度迁移度量学习

20.深度迁移学习用于时间序列分类

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值