Keras深度学习实战(3)——神经网络性能优化技术详解
0. 前言
我们已经学习了神经网络的基础概念,并了解了如何利用 Keras
库构建实用神经网络模型。同时我们还提到了,有多种超参数可以影响神经网络的准确性。在本节中,我们将详细介绍神经网络中各种超参数的作用,通过使用不同的超参数来优化神经网络性能。
1. 缩放输入数据集
缩放数据集是一个在网络训练之前提前对数据进行处理的过程,在此过程中,限制数据集中的数据范围,以确保它们不会分布在较大的区间。实现此目的的一种方法是将数据集中的每个数据除以数据集中的最大数据。 通常,缩放输入数据集能够提高神经网络的性能表现,是常用的数据预处理方法之一。
1.1 数据集缩放的合理性解释
在本节中,我们将了解缩放数据集能使神经网络性能更好的原因。为了了解缩放输入对输出的影响,我们对比在未缩放输入数据集时模型性能和在缩放输入数据集时的性能情况。
当输入数据未缩放时,在不同权重值的作用下 sigmoid
函数值如下表所示:</