VAE
文章平均质量分 98
变分自编码器及其变体的介绍和实战。
盼小辉丶
记录学习历程,分享学习心得,关注深度学习,欢迎交流学习.
展开
-
生成模型应用——使用变分自编码器(VAE)控制人脸属性生成人脸图片
变分自编码器(VAE)属于生成模型家族。VAE的生成器能够利用连续潜在空间的矢量产生有意义的输出。通过潜在矢量探索解码器输出的可能属性。在VAE中,重点在于潜编码的变分推理。我们将使用VAE生成一些人脸图片,并且可以通过修改潜变量来控制人脸属性。例如,如果知道了微笑属性的方向向量,则可以将其添加到潜在变量中以在人脸图片中添加微笑表情。原创 2021-05-23 22:09:40 · 6098 阅读 · 24 评论 -
变分自编码器(VAE)详解与实现(tensorflow2.x)
变分自编码器(VAE)属于生成模型家族。VAE的生成器能够利用连续潜在空间的矢量产生有意义的输出。通过潜在矢量探索解码器输出的可能属性。在VAE中,重点在于潜编码的变分推理。因此,VAE为潜在变量的学习和有效贝叶斯推理提供了合适的框架。在结构上,VAE与自编码器相似。它也由编码器(也称为识别或推理模型)和解码器(也称为生成模型)组成。 VAE和自编码器都试图在学习潜矢量的同时重建输入数据。但是,与自编码器不同,VAE的潜在空间是连续的,并且解码器本身被用作生成模型。原创 2020-10-24 20:32:14 · 3693 阅读 · 10 评论